Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36146157

RESUMO

In wireless sensor network (WSN)-based rigid body localization (RBL) systems, the non-line-of-sight (NLOS) propagation of the wireless signals leads to severe performance deterioration. This paper focuses on the RBL problem under the NLOS environment based on the time of arrival (TOA) measurement between the sensors fixed on the rigid body and the anchors, where the NLOS parameters are estimated to improve the RBL performance. Without any prior information about the NLOS environment, the highly non-linear and non-convex RBL problem is transformed into a difference of convex (DC) programming, which can be solved by using the concave-convex procedure (CCCP) to determine the position of the rigid body sensors and the NLOS parameters. To avoid error accumulation, the obtained NLOS parameters are utilized to refine the localization performance of the rigid body sensors. Then, the accurate position and the orientation of the rigid body in two-Dimensional space are obtained according to the relative deflection angle method. To reduce the computational complexity, the singular value decomposition (SVD) method is employed to solve the problem in three-Dimensional space. Simulation results show that the proposed method can effectively improve the performance of the rigid body localization based on the wireless sensor network in NLOS environment.

2.
Appl Opt ; 56(8): 2255-2259, 2017 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-28375315

RESUMO

Optical coherence tomography (OCT) allows noncontact acquisition of fingerprints and hence is a highly promising technology in the field of biometrics. OCT can be used to acquire both structural and microangiographic images of fingerprints. Microangiographic OCT derives its contrast from the blood flow in the vasculature of viable skin tissue, and microangiographic fingerprint imaging is inherently immune to fake fingerprint attack. Therefore, dual-modality (structural and microangiographic) OCT imaging of fingerprints will enable more secure acquisition of biometric data, which has not been investigated before. Our study on fingerprint identification based on structural and microangiographic OCT imaging is, we believe, highly innovative. In this study, we performed OCT imaging study for fingerprint acquisition, and demonstrated the capability of dual-modality OCT imaging for the identification of fake fingerprints.


Assuntos
Angiografia/métodos , Dermatoglifia , Tomografia de Coerência Óptica/métodos , Dedos/irrigação sanguínea , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA