RESUMO
BACKGROUND: The cis-regulatory element became increasingly important for resistance breeding. There were many DNA variations identified by resequencing. To investigate the links between the DNA variations and cis-regulatory element was the fundamental work. DNA variations in cis-regulatory elements caused phenotype variations in general. RESULTS: We used WGBS, ChIP-seq and RNA-seq technology to decipher the regulatory element landscape from eight hulless barley varieties under four kinds of abiotic stresses. We discovered 231,440 lowly methylated regions (LMRs) from the methylome data of eight varieties. The LMRs mainly distributed in the intergenic regions. A total of 97,909 enhancer-gene pairs were identified from the correlation analysis between methylation degree and expression level. A lot of enriched motifs were recognized from the tolerant-specific LMRs. The key transcription factors were screened out and the transcription factor regulatory network was inferred from the enhancer-gene pairs data for drought stress. The NAC transcription factor was predicted to target to TCP, bHLH, bZIP transcription factor genes. We concluded that the H3K27me3 modification regions overlapped with the LMRs more than the H3K4me3. The variation of single nucleotide polymorphism was more abundant in LMRs than the remain regions of the genome. CONCLUSIONS: Epigenetic regulation is an important mechanism for organisms to adapt to complex environments. Through the study of DNA methylation and histone modification, we found that many changes had taken place in enhancers and transcription factors in the abiotic stress of hulless barley. For example, transcription factors including NAC may play an important role. This enriched the molecular basis of highland barley stress response.
Assuntos
Hordeum , Hordeum/genética , Redes Reguladoras de Genes , Epigênese Genética , Melhoramento Vegetal , Fatores de Transcrição/genética , Metilação de DNA , Estresse Fisiológico/genéticaRESUMO
Allotetraploid oilseed rape (Brassica napus L.) is an agriculturally important crop. Cultivation and breeding of B. napus by humans has resulted in numerous genetically diverse morphotypes with optimized agronomic traits and ecophysiological adaptation. To further understand the genetic basis of diversification and adaptation, we report a draft genome of an Asian semi-winter oilseed rape cultivar 'ZS11' and its comprehensive genomic comparison with the genomes of the winter-type cultivar 'Darmor-bzh' as well as two progenitors. The integrated BAC-to-BAC and whole-genome shotgun sequencing strategies were effective in the assembly of repetitive regions (especially young long terminal repeats) and resulted in a high-quality genome assembly of B. napus 'ZS11'. Within a short evolutionary period (~6700 years ago), semi-winter-type 'ZS11' and the winter-type 'Darmor-bzh' maintained highly genomic collinearity. Even so, certain genetic differences were also detected in two morphotypes. Relative to 'Darmor-bzh', both two subgenomes of 'ZS11' are closely related to its progenitors, and the 'ZS11' genome harbored several specific segmental homoeologous exchanges (HEs). Furthermore, the semi-winter-type 'ZS11' underwent potential genomic introgressions with B. rapa (Ar ). Some of these genetic differences were associated with key agronomic traits. A key gene of A03.FLC3 regulating vernalization-responsive flowering time in 'ZS11' was first experienced HE, and then underwent genomic introgression event with Ar , which potentially has led to genetic differences in controlling vernalization in the semi-winter types. Our observations improved our understanding of the genetic diversity of different B. napus morphotypes and the cultivation history of semi-winter oilseed rape in Asia.
Assuntos
Brassica napus/genética , Brassica/genética , Variação Genética , Genoma de Planta/genética , Genômica , Sequência de Aminoácidos , Evolução Biológica , Cruzamento , Sequenciamento de Nucleotídeos em Larga Escala , Fenótipo , Poliploidia , Alinhamento de Sequência , Análise de Sequência de DNARESUMO
BACKGROUND: As event-specific sequence information for most unauthorised genetically modified organisms (GMOs) is currently still unavailable, detecting unauthorised GMOs remains challenging. Here, we used insect-resistant rice TT51-1 as an example to develop a novel approach via detecting GMOs by RNA-seq (sequencing) and PCR. RNA-seq of TT51-1 generated 4.8 million (M) 21-nt cDNA tags. Alignment to the Oryza sativa subsp. japonica reference genome revealed 24 098 unmapped tags. Foreign tags from the nopaline synthetic enzyme gene (NOS) terminator and insect-resistant genes were then identified by searching against the NCBI VecScreen and NT databases. RESULTS: To further isolate foreign DNA sequences, putative NOS terminator and insect-resistant gene tags were combined and used directly as primer pairs for long-range PCR, producing a 5016-bp fragment. The inserted DNA sequence of TT51-1 has been submitted to a database, and thus, similarity analysis using the database could identify a test sample. CONCLUSION: The novel approach has a great potential for application to the detection and identification of unauthorised GMOs in food and feed products. © 2016 Society of Chemical Industry.
Assuntos
Oryza/genética , Plantas Geneticamente Modificadas/genética , Agrobacterium tumefaciens/genética , Aminoácido Oxirredutases/genética , Bacillus thuringiensis/genética , Bases de Dados de Ácidos Nucleicos , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA , Regiões Terminadoras GenéticasRESUMO
BACKGROUND: Single-locus markers have many advantages compared with multi-locus markers in genetic and breeding studies because their alleles can be assigned to particular genomic loci in diversity analyses. However, there is little research on single-locus SSR markers in peanut. Through the de novo assembly of DNA sequencing reads of A. hypogaea, we developed single-locus SSR markers in a genomic survey for better application in genetic and breeding studies of peanut. RESULTS: In this study, DNA libraries with four different insert sizes were used for sequencing with 150 bp paired-end reads. Approximately 237 gigabases of clean data containing 1,675,631,984 reads were obtained after filtering. These reads were assembled into 2,102,446 contigs with an N50 length of 1,782 bp, and the contigs were further assembled into 1,176,527 scaffolds with an N50 of 3,920 bp. The total length of the assembled scaffold sequences was 2.0 Gbp, and 134,652 single-locus SSRs were identified from 375,180 SSRs. Among these developed single-locus SSRs, trinucleotide motifs were the most abundant, followed by tetra-, di-, mono-, penta- and hexanucleotide motifs. The most common motif repeats for the various types of single-locus SSRs have a tendency to be A/T rich. A total of 1,790 developed in silico single-locus SSR markers were chosen and used in PCR experiments to confirm amplification patterns. Of them, 1,637 markers that produced single amplicons in twelve inbred lines were considered putative single-locus markers, and 290 (17.7 %) showed polymorphisms. A further F2 population study showed that the segregation ratios of the 97 developed SSR markers, which showed polymorphisms between the parents, were consistent with the Mendelian inheritance law for single loci (1:2:1). Finally, 89 markers were assigned to an A. hypogaea linkage map. A subset of 100 single-locus SSR markers was shown to be highly stable and universal in a collection of 96 peanut accessions. A neighbor-joining tree of this natural population showed that genotypes have obviously correlation with botanical varieties. CONCLUSIONS: We have shown that the detection of single-locus SSR markers from a de novo genomic assembly of a combination of different-insert-size libraries is highly efficient. This is the first report of the development of genome-wide single-locus markers for A. hypogaea, and the markers developed in this study will be useful for gene tagging, sequence scaffold assignment, linkage map construction, diversity analysis, variety identification and association mapping in peanut.
Assuntos
Arachis/genética , Genoma de Planta , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Repetições de Microssatélites , Arachis/classificação , Mapeamento Cromossômico , Biologia Computacional/métodos , Evolução Molecular , Ligação Genética , Marcadores Genéticos , Genômica/métodos , Endogamia , Filogenia , Polimorfismo Genético , Reprodutibilidade dos TestesRESUMO
Recent sequencing of the Brassica rapa and Brassica oleracea genomes revealed extremely contrasting genomic features such as the abundance and distribution of transposable elements between the two genomes. However, whether and how these structural differentiations may have influenced the evolutionary rates of the two genomes since their split from a common ancestor are unknown. Here, we investigated and compared the rates of nucleotide substitution between two long terminal repeats (LTRs) of individual orthologous LTR-retrotransposons, the rates of synonymous and non-synonymous substitution among triplicated genes retained in both genomes from a shared whole genome triplication event, and the rates of genetic recombination estimated/deduced by the comparison of physical and genetic distances along chromosomes and ratios of solo LTRs to intact elements. Overall, LTR sequences and genic sequences showed more rapid nucleotide substitution in B. rapa than in B. oleracea. Synonymous substitution of triplicated genes retained from a shared whole genome triplication was detected at higher rates in B. rapa than in B. oleracea. Interestingly, non-synonymous substitution was observed at lower rates in the former than in the latter, indicating shifted densities of purifying selection between the two genomes. In addition to evolutionary asymmetry, orthologous genes differentially regulated and/or disrupted by transposable elements between the two genomes were also characterized. Our analyses suggest that local genomic and epigenomic features, such as recombination rates and chromatin dynamics reshaped by independent proliferation of transposable elements and elimination between the two genomes, are perhaps partially the causes and partially the outcomes of the observed inter-specific asymmetric evolution.
Assuntos
Brassica/genética , Evolução Molecular , Genoma de Planta , Retroelementos , Seleção Genética , DNA de Plantas/genética , Epigênese Genética , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Sequências Repetidas TerminaisRESUMO
BACKGROUND: Cultivated peanut, or groundnut (Arachis hypogaea L.), is an important oilseed crop with an allotetraploid genome (AABB, 2n=4x=40). In recent years, many efforts have been made to construct linkage maps in cultivated peanut, but almost all of these maps were constructed using low-throughput molecular markers, and most show a low density, directly influencing the value of their applications. With advances in next-generation sequencing (NGS) technology, the construction of high-density genetic maps has become more achievable in a cost-effective and rapid manner. The objective of this study was to establish a high-density single nucleotide polymorphism (SNP)-based genetic map for cultivated peanut by analyzing next-generation double-digest restriction-site-associated DNA sequencing (ddRADseq) reads. RESULTS: We constructed reduced representation libraries (RRLs) for two A. hypogaea lines and 166 of their recombinant inbred line (RIL) progenies using the ddRADseq technique. Approximately 175 gigabases of data containing 952,679,665 paired-end reads were obtained following Solexa sequencing. Mining this dataset, 53,257 SNPs were detected between the parents, of which 14,663 SNPs were also detected in the population, and 1,765 of the obtained polymorphic markers met the requirements for use in the construction of a genetic map. Among 50 randomly selected in silico SNPs, 47 were able to be successfully validated. One linkage map was constructed, which was comprised of 1,685 marker loci, including 1,621 SNPs and 64 simple sequence repeat (SSR) markers. The map displayed a distribution of the markers into 20 linkage groups (LGs A01-A10 and B01-B10), spanning a distance of 1,446.7 cM. The alignment of the LGs from this map was shown in comparison with a previously integrated consensus map from peanut. CONCLUSIONS: This study showed that the ddRAD library combined with NGS allowed the rapid discovery of a large number of SNPs in the cultivated peanut. The first high density SNP-based linkage map for A. hypogaea was generated that can serve as a reference map for cultivated Arachis species and will be useful in genetic mapping. Our results contribute to the available molecular marker resources and to the assembly of a reference genome sequence for the peanut.
Assuntos
Arachis/genética , Genoma de Planta , Polimorfismo de Nucleotídeo Único , Mapeamento Cromossômico , Biologia Computacional , Biblioteca Gênica , Ligação Genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Repetições de Microssatélites , Locos de Características Quantitativas , Análise de Sequência de DNA , TetraploidiaRESUMO
BACKGROUND: Bacterial wilt caused by Ralstonia solanacearum is a serious soil-borne disease of peanut (Arachis hypogaea L). The molecular basis of peanut response to R. solanacearum remains unknown. To understand the resistance mechanism behind peanut resistance to R. solanacearum, we used RNA-Seq to perform global transcriptome profiling on the roots of peanut resistant (R) and susceptible (S) genotypes under R. solanacearum infection. RESULTS: A total of 4.95 x 108 raw sequence reads were generated and subsequently assembled into 271, 790 unigenes with an average length of 890 bp and a N50 of 1, 665 bp. 179, 641 unigenes could be annotated by public protein databases. The pairwise transcriptome comparsions of time course (6, 12, 24, 48 and 72 h post inoculation) were conducted 1) between inoculated and control samples of each genotype, 2) between inoculated samples of R and S genotypes. The linear dynamics of transcriptome profile was observed between adjacent samples for each genotype, two genotypes shared similar transcriptome pattern at early time points with most significant up regulation at 12 hour, and samples from R genotype at 24 h and S genotype at 48 h showed similar transcriptome pattern, significant differences of transcriptional profile were observed in pairwise comparisons between R and S genotypes. KEGG analysis showed that the primary metabolisms were inhibited in both genotypes and stronger inhibition in R genotype post inoculation. The defense related genes (R gene, LRR-RLK, cell wall genes, etc.) generally showed a genotype-specific down regulation and different expression between both genotypes. CONCLUSION: This transcriptome profiling provided the largest data set that explores the dynamic in crosstalk between peanut and R. solanacearum. The results suggested that the down-regulation of primary metabolism is contributed to the resistance difference between R and S genotypes. The genotype-specific expression pattern of defense related DEGs also contributed to the resistance difference between R and S genotype. This study will strongly contribute to better understand the molecular interaction between plant and R. solanacearum.
Assuntos
Arachis/genética , Genes de Plantas , Ralstonia solanacearum/patogenicidade , Transcriptoma , Metabolismo dos Carboidratos/genética , Análise por Conglomerados , Bases de Dados Genéticas , Resistência à Doença/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genótipo , Doenças das Plantas/microbiologia , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Ralstonia solanacearum/isolamento & purificação , Análise de Sequência de RNARESUMO
BACKGROUND: Single nucleotide polymorphisms (SNPs) are the most common type of genetic variation. Identification of large numbers of SNPs is helpful for genetic diversity analysis, map-based cloning, genome-wide association analyses and marker-assisted breeding. Recently, identifying genome-wide SNPs in allopolyploid Brassica napus (rapeseed, canola) by resequencing many accessions has become feasible, due to the availability of reference genomes of Brassica rapa (2n = AA) and Brassica oleracea (2n = CC), which are the progenitor species of B. napus (2n = AACC). Although many SNPs in B. napus have been released, the objective in the present study was to produce a larger, more informative set of SNPs for large-scale and efficient genotypic screening. Hence, short-read genome sequencing was conducted on ten elite B. napus accessions for SNP discovery. A subset of these SNPs was randomly selected for sequence validation and for genotyping efficiency testing using the Illumina GoldenGate assay. RESULTS: A total of 892,536 bi-allelic SNPs were discovered throughout the B. napus genome. A total of 36,458 putative amino acid variants were located in 13,552 protein-coding genes, which were predicted to have enriched binding and catalytic activity as a result. Using the GoldenGate genotyping platform, 94 of 96 SNPs sampled could effectively distinguish genotypes of 130 lines from two mapping populations, with an average call rate of 92%. CONCLUSIONS: Despite the polyploid nature of B. napus, nearly 900,000 simple SNPs were identified by whole genome resequencing. These SNPs were predicted to be effective in high-throughput genotyping assays (51% polymorphic SNPs, 92% average call rate using the GoldenGate assay, leading to an estimated >450 000 useful SNPs). Hence, the development of a much larger genotyping array of informative SNPs is feasible. SNPs identified in this study to cause non-synonymous amino acid substitutions can also be utilized to directly identify causal genes in association studies.
Assuntos
Brassica napus/genética , Genoma de Planta , Polimorfismo de Nucleotídeo Único , Mapeamento Cromossômico , Genótipo , Técnicas de Genotipagem , Poliploidia , Análise de Sequência de DNARESUMO
BACKGROUND: Brassica oleracea is a morphologically diverse species in the family Brassicaceae and contains a group of nutrition-rich vegetable crops, including common heading cabbage, cauliflower, broccoli, kohlrabi, kale, Brussels sprouts. This diversity along with its phylogenetic membership in a group of three diploid and three tetraploid species, and the recent availability of genome sequences within Brassica provide an unprecedented opportunity to study intra- and inter-species divergence and evolution in this species and its close relatives. DESCRIPTION: We have developed a comprehensive database, Bolbase, which provides access to the B. oleracea genome data and comparative genomics information. The whole genome of B. oleracea is available, including nine fully assembled chromosomes and 1,848 scaffolds, with 45,758 predicted genes, 13,382 transposable elements, and 3,581 non-coding RNAs. Comparative genomics information is available, including syntenic regions among B. oleracea, Brassica rapa and Arabidopsis thaliana, synonymous (Ks) and non-synonymous (Ka) substitution rates between orthologous gene pairs, gene families or clusters, and differences in quantity, category, and distribution of transposable elements on chromosomes. Bolbase provides useful search and data mining tools, including a keyword search, a local BLAST server, and a customized GBrowse tool, which can be used to extract annotations of genome components, identify similar sequences and visualize syntenic regions among species. Users can download all genomic data and explore comparative genomics in a highly visual setting. CONCLUSIONS: Bolbase is the first resource platform for the B. oleracea genome and for genomic comparisons with its relatives, and thus it will help the research community to better study the function and evolution of Brassica genomes as well as enhance molecular breeding research. This database will be updated regularly with new features, improvements to genome annotation, and new genomic sequences as they become available. Bolbase is freely available at http://ocri-genomics.org/bolbase.
Assuntos
Brassica/genética , Bases de Dados Genéticas , Genômica , Arabidopsis/genética , Cromossomos de Plantas/genética , Genoma de Planta/genética , Anotação de Sequência Molecular , Fases de Leitura Aberta/genética , Sintenia/genéticaRESUMO
Paulownia witches' broom (PaWB), caused by phytoplasmas, is the most devastating infectious disease of Paulownia. Although a few MADS-box transcription factors have been reported to be involved in the formation of PaWB, there has been little investigation into all of the MADS-box gene family in Paulownia. The objective of this study is to identify the MADS-box gene family in Paulownia fortunei on a genome-wide scale and explore their response to PaWB infection. Bioinformatics software were used for identification, characterization, subcellular localization, phylogenetic analysis, the prediction of conserved motifs, gene structures, cis-elements, and protein-protein interaction network construction. The tissue expression profiling of PfMADS-box genes was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). Transcriptome data and the protein interaction network prediction were combined to screen the genes associated with PaWB formation. We identified 89 MADS-box genes in the P. fortunei genome and categorized them into 14 subfamilies. The comprehensive analysis showed that segment duplication events had significant effects on the evolution of the PfMADS-box gene family; the motif distribution of proteins in the same subfamily are similar; development-related, phytohormone-responsive, and stress-related cis-elements were enriched in the promoter regions. The tissue expression pattern of PfMADS-box genes suggested that they underwent subfunctional differentiation. Three genes, PfMADS3, PfMADS57, and PfMADS87, might be related to the occurrence of PaWB. These results will provide a valuable resource to explore the potential functions of PfMADS-box genes and lay a solid foundation for understanding the roles of PfMADS-box genes in paulownia-phytoplasma interactions.
Assuntos
Magnoliopsida , Phytoplasma , Magnoliopsida/genética , Doenças por Fitoplasmas , Filogenia , Doenças das Plantas/genética , Transcriptoma/genética , Phytoplasma/genéticaRESUMO
Phytoplasmas induce diseases in more than 1000 plant species and cause substantial ecological damage and economic losses, but the specific pathogenesis of phytoplasma has not yet been clarified. N 6-methyladenosine (m6A) is the most common internal modification of the eukaryotic Messenger RNA (mRNA). As one of the species susceptible to phytoplasma infection, the pathogenesis and mechanism of Paulownia has been extensively studied by scholars, but the m6A transcriptome map of Paulownia fortunei (P. fortunei) has not been reported. Therefore, this study aimed to explore the effect of phytoplasma infection on m6A modification of P. fortunei and obtained the whole transcriptome m6A map in P. fortunei by m6A-seq. The m6A-seq results of Paulownia witches' broom (PaWB) disease and healthy samples indicate that PaWB infection increased the degree of m6A modification of P. fortunei. The correlation analysis between the RNA-seq and m6A-seq data detected that a total of 315 differentially methylated genes were predicted to be significantly differentially expressed at the transcriptome level. Moreover, the functions of PaWB-related genes were predicted by functional enrichment analysis, and two genes related to maintenance of the basic mechanism of stem cells in shoot apical meristem were discovered. One of the genes encodes the receptor protein kinase CLV2 (Paulownia_LG2G000076), and the other gene encodes the homeobox transcription factor STM (Paulownia_LG15G000976). In addition, genes F-box (Paulownia_LG17G000760) and MSH5 (Paulownia_LG8G001160) had exon skipping and mutually exclusive exon types of alternative splicing in PaWB-infected seedling treated with methyl methanesulfonate, and m6A modification was found in m6A-seq results. Moreover, Reverse Transcription-Polymerase Chain Reaction (RT-PCR) verified that the alternative splicing of these two genes was associated with m6A modification. This comprehensive map provides a solid foundation for revealing the potential function of the mRNA m6A modification in the process of PaWB. In future studies, we plan to verify genes directly related to PaWB and methylation-related enzymes in Paulownia to elucidate the pathogenic mechanism of PaWB caused by phytoplasma invasion.
RESUMO
The current understanding of the pathogenesis of phytoplasma is still very limited and challenging. Here, ceRNA regulatory network and degradome sequencing identified a PfmiR156f-PfSPL regulatory module in Paulownia fortunei infected by phytoplasma, and RLM-5'RACE and dual luciferase analyses verified the relationship. The PfmiR156 cleavage site was located at 1104 nt and 1177 nt of PfSPL1 and PfSPL10, respectively. MG132 and epoxomicin, two 26S proteasome inhibitors, significantly increased the accumulation of PfSPL1. PfSPL1 was also the attack target of phytoplasma effectors (Pawb 3/9/16/37/51) after the phytoplasma invaded Paulownia. Moreover, molecular docking implied that the effectors may interact with the conserved SBP domain of the target protein PfSPL1. Basically, these results indicated that the stability of PfSPL1 was regulated by PfmiR156 cleavage activity and/or the 26S proteasome pathway at the post-translation level. The PfSPL1, which is a transcription factor, was also the one of the targets of multiple effectors attacking Paulownia. This study provides a good scope to understand the paulownia phytoplasma infecting mechanism.
Assuntos
Lamiales , Phytoplasma , Phytoplasma/genética , Fatores de Transcrição/genética , Simulação de Acoplamento Molecular , Regulação da Expressão Gênica de PlantasRESUMO
BACKGROUND: Brassica oleracea encompass a family of vegetables and cabbage that are among the most widely cultivated crops. In 2009, the B. oleracea Genome Sequencing Project was launched using next generation sequencing technology. None of the available maps were detailed enough to anchor the sequence scaffolds for the Genome Sequencing Project. This report describes the development of a large number of SSR and SNP markers from the whole genome shotgun sequence data of B. oleracea, and the construction of a high-density genetic linkage map using a double haploid mapping population. RESULTS: The B. oleracea high-density genetic linkage map that was constructed includes 1,227 markers in nine linkage groups spanning a total of 1197.9 cM with an average of 0.98 cM between adjacent loci. There were 602 SSR markers and 625 SNP markers on the map. The chromosome with the highest number of markers (186) was C03, and the chromosome with smallest number of markers (99) was C09. CONCLUSIONS: This first high-density map allowed the assembled scaffolds to be anchored to pseudochromosomes. The map also provides useful information for positional cloning, molecular breeding, and integration of information of genes and traits in B. oleracea. All the markers on the map will be transferable and could be used for the construction of other genetic maps.
Assuntos
Brassica/genética , Mapeamento Cromossômico , Genoma de Planta/genética , Marcadores Genéticos/genética , Repetições de Microssatélites/genética , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
Sinapis alba has many desirable agronomic traits including tolerance to drought. In this investigation, we performed the genome-wide transcriptional profiling of S. alba leaves under drought stress and rewatering growth conditions in an attempt to identify candidate genes involved in drought tolerance, using the Illumina deep sequencing technology. The comparative analysis revealed numerous changes in gene expression level attributable to the drought stress, which resulted in the down-regulation of 309 genes and the up-regulation of 248 genes. Gene ontology analysis revealed that the differentially expressed genes were mainly involved in cell division and catalytic and metabolic processes. Our results provide useful information for further analyses of the drought stress tolerance in Sinapis, and will facilitate molecular breeding for Brassica crop plants.
Assuntos
Secas , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Folhas de Planta/genética , Sinapis/crescimento & desenvolvimento , Sinapis/genética , Estresse Fisiológico/genética , Análise por Conglomerados , Regulação para Baixo/genética , Dosagem de Genes/genética , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Genes de Plantas/genética , Anotação de Sequência Molecular , Folhas de Planta/crescimento & desenvolvimento , Regulação para Cima/genética , ÁguaRESUMO
Accumulated evidence has shown that each of the three basic Brassica genomes (A, B and C) has undergone profound changes in different species, and has led to the concept of the "subgenome". Significant intersubgenomic heterosis was observed in hybrids between traditional Brassica napus and first generation lines of new type B. napus. The latter were produced by the partial introgression of subgenomic components from different species into B. napus. To increase the proportion of exotic subgenomic components and thus achieve stronger heterosis, lines of first generation new type B. napus were intercrossed with each other, and subjected to intensive marker-assisted selection to develop the second generation of new type B. napus. The second generation showed better agronomic traits and a higher proportion of introgression of subgenomic components than did the first generation. Compared with the commercial hybrid and the hybrids produced with the first generation new type B. napus, the novel hybrids showed stronger heterosis for seed yield during the 2 years of field trials. The extent of heterosis showed a significant positive correlation with the introgressed subgenomic components in the parental new type B. napus. To increase the content of the exotic subgenomic components further and to allow sustainable breeding of novel lines of new type B. napus, we initiated the development of a gene pool for new type B. napus that contained a substantial amount of genetic variation in the A(r) and C(c) genome. We discuss new approaches to broaden the avenue of intersubgenomic heterosis in oilseed Brassica.
Assuntos
Brassica napus/genética , Genoma de Planta , Vigor Híbrido/genética , Hibridização GenéticaRESUMO
The genetic architecture determinants of yield traits in peanut (Arachis hypogaea L.) are poorly understood. In the present study, an effort was made to map quantitative trait loci (QTLs) for yield traits using recombinant inbred lines (RIL). A genetic linkage map was constructed containing 609 loci, covering a total of 1557.48 cM with an average distance of 2.56 cM between adjacent markers. The present map exhibited good collinearity with the physical map of diploid species of Arachis. Ninety-two repeatable QTLs were identified for 11 traits including height of main stem, total branching number, and nine pod- and seed-related traits. Of the 92 QTLs, 15 QTLs were expressed across three environments and 65 QTLs were newly identified. Twelve QTLs for the height of main stem and the pod- and seed-related traits explaining more than 10 % of phenotypic variation showed a great potential for marker-assisted selection in improving these traits. The trait-by-trait meta-analysis revealed 33 consensus QTLs. The consensus QTLs and other QTLs were further integrated into 29 pleiotropic unique QTLs with the confidence interval of 1.86 cM on average. The significant co-localization of QTLs was consistent with the significant phenotypic correlations among these traits. The complexity of the genetic architecture of yield traits was demonstrated. The present QTLs for pod- and seed-related traits could be the most fundamental genetic factors contributing to the yield traits in peanut. The results provide a good foundation for fine mapping, cloning and designing molecular breeding of favorable genes in peanut.
RESUMO
To facilitate the pseudochromosomes assembly and gene cloning in rapeseed, we developed a reference genetic population/map (named BnaZNF2) from two sequenced cultivars, Zhongshuang11 and No.73290, those exhibit significant differences in many traits, particularly yield components. The BnaZNF2 genetic map exhibited perfect collinearity with the physical map of B. napus, indicating its high quality. Comparative mapping revealed several genomic rearrangements between B. napus and B. rapa or B. oleracea. A total of eight and 16 QTLs were identified for pod number and seed number per pod, respectively, and of which three and five QTLs are identical to previously identified ones, whereas the other five and 11 are novel. Two new major QTL respectively for pod number and seed number per pod, qPN.A06-1 and qSN.A06-1 (R(2 )= 22.8% and 32.1%), were colocalised with opposite effects, and only qPN.A06-1 was confirmed and narrowed by regional association analysis to 180 kb including only 33 annotated genes. Conditional QTL analysis and subsequent NILs test indicated that tight linkage, rather than pleiotropy, was the genetic causation of their colocalisation. Our study demonstrates potential of this reference genetic population/map for precise QTL mapping and as a base for positional gene cloning in rapeseed.
Assuntos
Brassica napus/genética , Brassica rapa/genética , Sementes/genética , Brassica napus/crescimento & desenvolvimento , Brassica rapa/crescimento & desenvolvimento , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Estudos de Associação Genética , Genoma de Planta , Desequilíbrio de Ligação , Repetições de Microssatélites , Anotação de Sequência Molecular , Fenótipo , Locos de Características Quantitativas , Sementes/crescimento & desenvolvimento , Análise de Sequência de DNARESUMO
Sinapis arvensis is a weed with strong biological activity. Despite being a problematic annual weed that contaminates agricultural crop yield, it is a valuable alien germplasm resource. It can be utilized for broadening the genetic background of Brassica crops with desirable agricultural traits like resistance to blackleg (Leptosphaeria maculans), stem rot (Sclerotinia sclerotium) and pod shatter (caused by FRUITFULL gene). However, few genetic studies of S. arvensis were reported because of the lack of genomic resources. In the present study, we performed de novo transcriptome sequencing to produce a comprehensive dataset for S. arvensis for the first time. We used Illumina paired-end sequencing technology to sequence the S. arvensis flower transcriptome and generated 40,981,443 reads that were assembled into 131,278 transcripts. We de novo assembled 96,562 high quality unigenes with an average length of 832 bp. A total of 33,662 full-length ORF complete sequences were identified, and 41,415 unigenes were mapped onto 128 pathways using the KEGG Pathway database. The annotated unigenes were compared against Brassica rapa, B. oleracea, B. napus and Arabidopsis thaliana. Among these unigenes, 76,324 were identified as putative homologs of annotated sequences in the public protein databases, of which 1194 were associated with plant hormone signal transduction and 113 were related to gibberellin homeostasis/signaling. Unigenes that did not match any of those sequence datasets were considered to be unique to S. arvensis. Furthermore, 21,321 simple sequence repeats were found. Our study will enhance the currently available resources for Brassicaceae and will provide a platform for future genomic studies for genetic improvement of Brassica crops.
Assuntos
Flores/genética , Sequenciamento de Nucleotídeos em Larga Escala , RNA de Plantas , Sinapis/genética , Análise por Conglomerados , Biologia Computacional , DNA Complementar , Flores/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Repetições de Microssatélites , Anotação de Sequência Molecular , Sequências Repetitivas de Ácido Nucleico , Análise de Sequência de RNA , Transdução de Sinais , Sinapis/crescimento & desenvolvimento , TranscriptomaRESUMO
Selection of reference genes in Brassica napus, a tetraploid (4×) species, is a very difficult task without information on genome and transcriptome. By now, only several traditional reference genes which show significant expression differentiation under different conditions are used in B. napus. In the present study, based on genome and transcriptome data of the rapeseed Zhongshuang-11 cultivar, 14 candidate reference genes were screened for investigation in different tissues, cultivars, and treated conditions of B. napus. These genes were as follows: ELF5, ENTH, F-BOX7, F-BOX2, FYPP1, GDI1, GYF, MCP2d, OTP80, PPR, SPOC, Unknown1, Unknown2 and UBA. Among them, excluding GYF and FYPP1, another 12 genes, were identified to perform better than traditional reference genes ACTIN7 and GAPDH. To further validate the accuracy of the newly developed reference genes in normalization, expression levels of BnCAT1 (B. napus catalase 1) in different rapeseed tissues and seedlings under stress conditions were normalized by the three most stable reference genes PPR, GDI1, and ENTH and little difference existed in normalization results. To the best of our knowledge, this is the first time B. napus reference genes have been provided with the help of complete genome and transcriptome information. The new reference genes provided in this study are more accurate than previously reported reference genes in quantifying expression levels of B. napus genes.
Assuntos
Brassica/genética , Genes de Plantas , Reação em Cadeia da Polimerase Via Transcriptase Reversa/normas , Transcriptoma , Brassica/metabolismo , Marcadores Genéticos , Padrões de ReferênciaRESUMO
Although much research has been conducted, the pattern of microsatellite distribution has remained ambiguous, and the development/utilization of microsatellite markers has still been limited/inefficient in Brassica, due to the lack of genome sequences. In view of this, we conducted genome-wide microsatellite characterization and marker development in three recently sequenced Brassica crops: Brassica rapa, Brassica oleracea and Brassica napus. The analysed microsatellite characteristics of these Brassica species were highly similar or almost identical, which suggests that the pattern of microsatellite distribution is likely conservative in Brassica. The genomic distribution of microsatellites was highly non-uniform and positively or negatively correlated with genes or transposable elements, respectively. Of the total of 115 869, 185 662 and 356 522 simple sequence repeat (SSR) markers developed with high frequencies (408.2, 343.8 and 356.2 per Mb or one every 2.45, 2.91 and 2.81 kb, respectively), most represented new SSR markers, the majority had determined physical positions, and a large number were genic or putative single-locus SSR markers. We also constructed a comprehensive database for the newly developed SSR markers, which was integrated with public Brassica SSR markers and annotated genome components. The genome-wide SSR markers developed in this study provide a useful tool to extend the annotated genome resources of sequenced Brassica species to genetic study/breeding in different Brassica species.