Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
New Phytol ; 242(3): 1275-1288, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38426620

RESUMO

Rhizosphere microbiomes are pivotal for crop fitness, but the principles underlying microbial assembly during root-soil interactions across soils with different nutrient statuses remain elusive. We examined the microbiomes in the rhizosphere and bulk soils of maize plants grown under six long-term (≥ 29 yr) fertilization experiments in three soil types across middle temperate to subtropical zones. The assembly of rhizosphere microbial communities was primarily driven by deterministic processes. Plant selection interacted with soil types and fertilization regimes to shape the structure and function of rhizosphere microbiomes. Predictive functional profiling showed that, to adapt to nutrient-deficient conditions, maize recruited more rhizobacteria involved in nutrient availability from bulk soil, although these functions were performed by different species. Metagenomic analyses confirmed that the number of significantly enriched Kyoto Encyclopedia of Genes and Genomes Orthology functional categories in the rhizosphere microbial community was significantly higher without fertilization than with fertilization. Notably, some key genes involved in carbon, nitrogen, and phosphorus cycling and purine metabolism were dominantly enriched in the rhizosphere soil without fertilizer input. In conclusion, our results show that maize selects microbes at the root-soil interface based on microbial functional traits beneficial to its own performance, rather than selecting particular species.


Assuntos
Alphaproteobacteria , Microbiota , Zea mays/microbiologia , Microbiologia do Solo , Solo/química , Rizosfera , Fertilização
2.
Phys Rev Lett ; 132(5): 056203, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38364171

RESUMO

Friction is responsible for about one-third of the primary energy consumption in the world. So far, a thorough atomistic understanding of the frictional energy dissipation mechanisms is still lacking. The Amontons' law states that kinetic friction is independent of the sliding velocity while the Prandtl-Tomlinson model suggests that damping is proportional to the relative sliding velocity between two contacting objects. Through careful analysis of the energy dissipation process in atomic force microscopy measurements, here we propose that damping force is proportional to the tip oscillation speed induced by friction. It is shown that a physically well-founded damping term can better reproduce the multiple peaks in the velocity-dependent friction force observed in both experiments and molecular dynamics simulations. Importantly, the analysis gives a clear physical picture of the dynamics of energy dissipation in different friction phases, which provides insight into long-standing puzzles in sliding friction, such as velocity weakening and spring-stiffness-dependent friction.

3.
Nano Lett ; 22(23): 9529-9536, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36449068

RESUMO

Friction force microscopy experiments on moiré superstructures of graphene-coated platinum surfaces demonstrate that in addition to atomic stick-slip dynamics, a new dominant energy dissipation route emerges. The underlying mechanism, revealed by atomistic molecular dynamics simulations, is related to moiré ridge elastic deformations and subsequent relaxation due to the action of the pushing tip. The measured frictional velocity dependence displays two distinct regimes: (i) at low velocities, the friction force is small and nearly constant; and (ii) above some threshold, friction increases logarithmically with velocity. The threshold velocity, separating the two frictional regimes, decreases with increasing normal load and moiré superstructure period. Based on the measurements and simulation results, a phenomenological model is derived, allowing us to calculate friction under a wide range of room temperature experimental conditions (sliding velocities of 1-104 nm/s and a broad range of normal loads) and providing excellent agreement with experimental observations.

4.
Environ Sci Technol ; 56(5): 2917-2935, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35148082

RESUMO

Characteristic emerging pollutants at low concentration have raised much attention for causing a bottleneck in water remediation, especially in complex water matrices where high concentration of interferents coexist. In the future, tailored treatment methods are therefore of increasing significance for accurate removal of target pollutants in different water matrices. This critical review focuses on the overall strategies for accurately removing highly toxic emerging pollutants in the presence of typical interferents. The main difficulties hindering the improvement of selectivity in complex matrices are analyzed, implying that it is difficult to adopt a universal approach for multiple targets and water substrates. Selective methods based on assorted principles are proposed aiming to improve the anti-interference ability. Thus, typical approaches and fundamentals to achieve selectivity are subsequently summarized including their mechanism, superiority and inferior position, application scope, improvement method and the bottlenecks. The results show that different methods may be applicable to certain conditions and target pollutants. To better understand the mechanism of each selective method and further select the appropriate method, advanced methods for qualitative and quantitative characterization of selectivity are presented. The processes of adsorption, interaction, electron transfer, and bond breaking are discussed. Some comparable selective quantitative methods are helpful for promoting the development of related fields. The research framework of selectivity removal and its fundamentals are established. Presently, although continuous advances and remarkable achievements have been attained in the selective removal of characteristic organic pollutants, there are still various substantial challenges and opportunities. It is hopeful to inspire the researches on the new generation of water and wastewater treatment technology, which can selectively and preferentially treat characteristic pollutants, and establish a reliable research framework to lead the direction of environmental science.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Purificação da Água , Adsorção , Águas Residuárias , Água , Poluentes Químicos da Água/análise
5.
Nano Lett ; 21(11): 4615-4621, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34018741

RESUMO

Friction represents a major energy dissipation mode, yet the atomistic mechanism of how friction converts mechanical motion into heat remains elusive. It has been suggested that excess phonons are mainly excited at the washboard frequency, the fundamental frequency at which relative motion excites the interface atoms, and the subsequent thermalization of these nonequilibrium phonons completes the energy dissipation process. Through combined atomic force microscopy measurements and atomistic modeling, here we show that the nonlinear interactions between a sliding tip and the substrate can generate excess phonons at not only the washboard frequency but also its harmonics. These nonequilibrium phonons can induce resonant vibration of the tip and lead to multiple peaks in the friction force as the tip sliding velocity ramps up. These observations disclose previously unrecognized energy dissipation channels associated with tip vibration and provide insights into engineering friction force through adjusting the resonant frequency of the tip-substrate system.

6.
J Res Med Sci ; 27: 3, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35342449

RESUMO

Background: The adaptive immune system plays a role in the pathogenesis of idiopathic pulmonary fibrosis (IPF) has been reported previously. However, the association between airway and circulating autoantibodies (AAbs) levels is unclear. The aim of this study is to investigate the link between the AAb levels in airway and circulation in stable patients with IPF. Materials and Methods: From June 2016 to March 2017, 21 stable IPF patients and 22 healthy volunteers were recruited. We established Luminex interacting AAbs with bead-antigen complex to detect the immunoglobulin G antibodies levels of ten autoantigens which were matched serum (Se) and sputum (Sp) samples collected from recruited subjects, including Smith (Sm), Anti-ribosomal P antibody (P0), Sjögren syndrome type A antigen (SSA), La/Sjögren syndrome type B antigen (SSB), DNA topoisomerase (Scl-70), histidyl-tRNA synthetase (Jo-1), U1 small nuclear ribonucleoprotein (U1-SnRNP), thyroid peroxidase, Proteinase 3, and Myeloperoxidase. Spearman's rank correlation matrix was applied to explore the associations of Ab profiles between Se and Sp. Results: For IPF patients, Spearman's correlation matrix showed multiple intercorrelations among Sp-AAbs and Sp-AAbs (P < 0.05), while only the levels of AAb against Sm and anti-La in Se were correlated with those Sp-AAb counterparts (P < 0.05). For healthy individuals, only anti-La in Se was associated with those Sp-AAb counterparts (P < 0.05). For IPF patients, there was a positive correlation between carbon monoxide diffusing capacity (DLCO)% predicted and Sp-anti-P0 level (r = 0.464, P = 0.034). Forced vital capacity% predicted was positively correlated with Sp-anti-Scl-70 level (r = 0.466, P = 0.033). Conclusion: Comparing to Se-AAbs, Sp-AAbs are more associated with clinical parameters in the patients with IPF. In order to better understand the role of autoimmunity in the pathogenesis of IPF, detection of Sp-AAbs for local autoimmune responses may be a good choice.

7.
Phys Chem Chem Phys ; 23(39): 22760-22767, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34608903

RESUMO

Optimizing the efficiency of heat dissipation across an interface is a great challenge with the continuously increasing integration of microelectronic devices. In this work, an effective method in tuning the heat conduction across the Al/graphene/SiO2 interface is reported. It was found that the interfacial thermal conductance of Al/irradiated graphene/SiO2 can be increased by a factor of 3, as compared with that of Al/pristine graphene/SiO2. The X-ray photoelectron spectroscopy (XPS) analysis indicates that ion irradiation may promote the formation of CO bonds on the irradiated graphene surface, which is beneficial to the enhancement of interfacial thermal conductance. The density functional theory (DFT) calculations reveal that in addition to the formed bonds between O atoms and Al atoms, the adsorption strength between Al and irradiated graphene is intensified, which plays a dominant role in enhancing the interfacial thermal conductance of Al/graphene/SiO2.

8.
Neuroimage ; 217: 116910, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32389729

RESUMO

Electroencephalography (EEG) concurrently collected with functional magnetic resonance imaging (fMRI) is heavily distorted by the repetitive gradient coil switching during the fMRI acquisition. The performance of the typical template-based gradient artifact suppression method can be suboptimal because the artifact changes over time. Gradient artifact residuals also impede the subsequent suppression of ballistocardiography artifacts. Here we propose recording continuous EEG with temporally sparse fast fMRI (fast fMRI-EEG) to minimize the EEG artifacts caused by MRI gradient coil switching without significantly compromising the field-of-view and spatiotemporal resolution of fMRI. Using simultaneous multi-slice inverse imaging to achieve whole-brain fMRI with isotropic 5-mm resolution in 0.1 â€‹s, and performing these acquisitions once every 2 â€‹s, we have 95% of the duty cycle available to record EEG with substantially less gradient artifact. We found that the standard deviation of EEG signals over the entire acquisition period in fast fMRI-EEG was reduced to 54% of that in conventional concurrent echo-planar imaging (EPI) and EEG recordings (EPI-EEG) across participants. When measuring 15-Hz steady-state visual evoked potentials (SSVEPs), the baseline-normalized oscillatory neural response in fast fMRI-EEG was 2.5-fold of that in EPI-EEG. The functional MRI responses associated with the SSVEP delineated by EPI and fast fMRI were similar in the spatial distribution, the elicited waveform, and detection power. Sparsely interleaved fast fMRI-EEG provides high-quality EEG without substantially compromising the quality of fMRI in evoked response measurements, and has the potential utility for applications where the onset of the target stimulus cannot be precisely determined, such as epilepsy.


Assuntos
Eletroencefalografia/métodos , Imageamento por Ressonância Magnética/métodos , Córtex Visual/diagnóstico por imagem , Artefatos , Mapeamento Encefálico , Imagem Ecoplanar , Potenciais Evocados Visuais , Feminino , Hemodinâmica , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Imagem Multimodal , Imagens de Fantasmas , Estimulação Luminosa , Análise de Ondaletas , Adulto Jovem
9.
Dev Dyn ; 244(7): 852-65, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25981356

RESUMO

BACKGROUND: Tousled-like kinase (Tlk) is a conserved serine/threonine kinase regulating DNA replication, chromatin assembly, and DNA repair. Previous studies have suggested that Tlk is involved in cell morphogenesis in vitro. In addition, tlk genetically interact with Rho1, which encodes a key regulator of the cytoskeleton. However, whether Tlk plays a physiological role in cell morphogenesis and cytoskeleton rearrangement remains unknown. RESULTS: In tlk mutant follicle cells, area of the apical domain was reduced. The density of microtubules was increased in tlk mutant cells. The density of actin filaments was increased in the apical region and decreased in the basal region. Because area of the apical domain was reduced, we examined the levels of proteins located in the apical region by using immunofluorescence. The fluorescence intensities of two adherens junction proteins Armadillo (Arm) and DE-cadherin (DE-cad), atypical protein kinase C (aPKC), and Notch, were all increased in tlk mutant cells. The basolateral localized Discs large (Dlg) shifted apically in tlk mutant cells. CONCLUSIONS: Increase of protein densities in the apical region might be resulted from disruption of the cytoskeleton and shrinkage of the apical domain. Together, these data suggest a novel role of Tlk in maintaining cell morphology, possibly through modulating the cytoskeleton.


Assuntos
Proteínas de Drosophila/metabolismo , Microtúbulos/enzimologia , Morfogênese/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Proteínas do Domínio Armadillo/genética , Proteínas do Domínio Armadillo/metabolismo , Caderinas/genética , Caderinas/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Microtúbulos/genética , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Proteínas Serina-Treonina Quinases/genética , Receptores Notch/genética , Receptores Notch/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Dalton Trans ; 53(25): 10744-10752, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38873804

RESUMO

Lanthanide ions are commonly used as co-dopant ions for trap regulation in afterglow phosphors. However, rationally designing trap distribution to improve the afterglow performance remains challenging. Herein, the vacuum referred binding energy (VRBE) diagram was constructed to aid in the search for effective lanthanide ions to improve the near-infrared afterglow properties of ZnGa2O4:Cr3+. The constructed VRBE diagram indicates that Ln3+ (Ln = Sm, Yb, Tb) ions can create traps in ZnGa2O4, which is confirmed by the luminescence characterization. Results show that doping with Ln3+ (Ln = Sm, Yb, Tb) ions can significantly improve the afterglow intensity and duration of the phosphor due to the increased shallow trap density and trap depth. Among these samples, the Sm3+-doped sample exhibits the best afterglow properties. The afterglow enhancement mechanism by Ln3+ doping is discussed in detail. This work not only presents the lanthanide ions that can be used to regulate the trap distribution of ZnGa2O4:Cr3+ phosphors, but also provides new insights for the design of new afterglow phosphors with practical application value.

11.
Microorganisms ; 12(3)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38543625

RESUMO

Crop residue decomposition is an important part of the carbon cycle in agricultural ecosystems, and microorganisms are widely recognized as key drivers during this process. However, we still know little about how nitrogen (N) input and rhizosphere effects from the next planting season impact key straw-decomposing microbial communities. Here, we combined amplicon sequencing and DNA-Stable Isotope Probing (DNA-SIP) to explore these effects through a time-series wheat pot experiment with four treatments: 13C-labeled maize straw addition with or without N application (S1N1 and S1N0), and no straw addition with or without N application (S0N1 and S0N0). The results showed that straw addition significantly reduced soil microbial alpha diversity in the early stages. Straw addition changed microbial beta diversity and increased absolute abundance in all stages. Growing plants in straw-amended soil further reduced bacterial alpha diversity, weakened straw-induced changes in beta diversity, and reduced bacterial and fungal absolute abundance in later stages. In contrast, N application could only increase the absolute abundance of soil bacteria and fungi while having little effect on alpha and beta diversity. The SIP-based taxonomic analysis of key straw-decomposing bacteria further indicated that the dominant phyla were Actinobacteria and Proteobacteria, with overrepresented genera belonging to Vicinamibacteraceae and Streptomyces. Key straw-decomposing fungi were dominated by Ascomycota, with overrepresented genera belonging to Penicillium and Aspergillus. N application significantly increased the absolute abundance of key straw-decomposing microorganisms; however, this increase was reduced by the rhizosphere effect. Overall, our study identified key straw-decomposing microorganisms in straw-amended soil and demonstrated that they exhibited opposite responses to N application and the rhizosphere effect.

12.
J Microbiol Immunol Infect ; 57(1): 156-163, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37919171

RESUMO

BACKGROUND: Proper identification of the polymicrobial microorganisms in patients with limb-threatening diabetic foot ulcers (LTDFUs) using conventional culture is insufficient. This prospective study evaluates the potential value of adjuvant molecular testing assisting in identify fastidious micro-organisms in LTDFUs compared to standard treatment alone. METHODS: Ninety patients with LTDFUs received interdisciplinary and standard antibiotic treatment in a referral diabetic foot center. A simultaneous 16S amplicon sequencing (16S AS) specimen along with conventional culture collected at admission was used to retrospectively evaluate the microbiological findings and its association with amputation outcomes. RESULTS: The microorganism count revealed by 16S AS overwhelmed that of conventional culturing (17 vs. 3 bacteria/ulcer respectively). The Stenotrophomonas spp. revealed in 29 patients were highly correlated with major (above ankle) amputation (OR: 4.76, 95% CI 1.01-22.56), while only one had been concomitantly identified by conventional culturing. Thus, there were 27 cases without proper antibiotics coverage during treatment. CONCLUSIONS: Adjuvant molecular testing assisted identification of fastidious pathogens such as Stenotrophomonas infection and might be associated with major amputation in patients with LTDFUs.


Assuntos
Diabetes Mellitus , Pé Diabético , Microbiota , Humanos , Pé Diabético/cirurgia , Estudos Prospectivos , Estudos Retrospectivos , Amputação Cirúrgica , Adjuvantes Imunológicos
13.
Cancer Res Commun ; 3(1): 109-118, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36968226

RESUMO

In the last decades, antibody-based tumor therapy has fundamentally improved the efficacy of treatment for patients with cancer. Currently, almost all tumor antigen-targeting antibodies approved for clinical application are of IgG1 Fc isotype. Similarly, the mouse homolog mIgG2a is the most commonly used in tumor mouse models. However, in mice, the efficacy of antibody-based tumor therapy is largely restricted to a prophylactic application. Direct isotype comparison studies in mice in a therapeutic setting are scarce. In this study, we assessed the efficacy of mouse tumor-targeting antibodies of different isotypes in a therapeutic setting using a highly systematic approach. To this end, we engineered and expressed antibodies of the same specificity but different isotypes, targeting the artificial tumor antigen CD90.1/Thy1.1 expressed by B16 melanoma cells. Our experiments revealed that in a therapeutic setting mIgG2a was superior to both mIgE and mIgG1 in controlling tumor growth. Furthermore, the observed mIgG2a antitumor effect was entirely Fc mediated as the protection was lost when an Fc-silenced mIgG2a isotype (LALA-PG mutations) was used. These data confirm mIgG2a superiority in a therapeutic tumor model. Significance: Direct comparisons of different antibody isotypes of the same specificity in cancer settings are still scarce. Here, it is shown that mIgG2a has a greater effect compared with mIgG1 and mIgE in controlling tumor growth in a therapeutic setting.


Assuntos
Imunoglobulina G , Neoplasias , Animais , Camundongos , Receptores Fc , Neoplasias/terapia , Antígenos de Neoplasias
14.
J Hazard Mater ; 452: 131307, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37023579

RESUMO

The removal of a class of toxic thiol-containing heterocyclic pollutants from complex water matrices has great environmental significance. In this study, a novel photoanode (Au/MIL100(Fe)/TiO2) with dual recognition functions was designed for selective group-targeting photoelectrocatalytic removal of thiol-containing heterocyclic pollutants from various aquatic systems. The average degradation and adsorption removal efficiency of 2-mercaptobenzimidazole, 2-mercaptobenzothiazole, and 2-mercaptobenzoxazole were still above 96.7% and 13.5% after selective treatment with Au/MIL100(Fe)/TiO2 even coexisting with 10-fold concentration of macromolecular interferents (sulfide lignin and natural organic matters) and the same concentration of micromolecular structural analogues. While they were below 71.6% and 3.9% after non-selective treatment with TiO2. Targets in the actual system were selectively removed to 0.9 µg L-1, which is 1/10 of that after non-selective treatment. FTIR, XPS and operando electrochemical infrared results proved that the highly specific recognition mechanism was mainly attributable to both the size screening of MIL100(Fe) toward targets and Au-S bond formed between -SH group of targets and Au of Au/MIL100(Fe)/TiO2. •OH are the reactive oxygen species. The degradation mechanism was further investigated via excitation-emission matrix fluorescence spectroscopy and LC-MS. This study provides new guidelines for the selective group-targeting removal of toxic pollutants with characteristic functional groups from complex water matrices.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Titânio/química , Compostos de Sulfidrila , Água , Poluentes Químicos da Água/química
15.
Sci Total Environ ; 902: 166092, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37558068

RESUMO

Environmental factors (e.g., climate and edaphic factors) indirectly regulate residue decomposition via microbial communities. Microbial ecological clusters (eco-clusters) structured by specific environmental factors have consequences for ecosystem functions. However, less is known about how microbial eco-clusters affect residue decomposition, especially over broad geographic scales. We collected agricultural soils from adjacent pairs of upland and paddy fields along a latitudinal gradient from the cold-temperature zone to the tropical zone, and conducted a microcosm experiment with 13C-labelled maize residue to explore the continental pattern of maize residue-derived 13CO2 (RDC), and whether and how microbial eco-clusters drive and predict RDC. Results showed that RDC decreased with latitude in both upland and paddy fields. Further, we identified 21 well-defined eco-clusters according to microbial environmental preferences, which explained 51.15 % of the spatial variations in RDC. The eco-clusters of high-total annual precipitation (TAP), high-mean annual temperature (MAT), low-pH, and some low-nutrient-associated exerted a positive effect on RDC. These eco-clusters contained many taxa belonging to the Actinobacteriota, Firmicutes, and Sordariomycetes, and their relative abundance decreased with latitude. Upland soils displayed 2.40-fold of RDC over paddy soils. Low-pH and high-organic matter (OM) eco-clusters were found to be the most prominent predictors of RDC in upland and paddy fields, respectively. Finally, we constructed a continental atlas of RDC in both upland and paddy fields based on eco-clusters and high-resolution climate and soil data. Overall, our study provides important evidence that historical environment-shaped microbial eco-clusters can drive and predict residue decomposition, providing new insights into how environmental factors indirectly regulate residue decomposition.


Assuntos
Microbiota , Zea mays , Solo/química , Agricultura , Bactérias , Microbiologia do Solo , Carbono
16.
Mol Ther Nucleic Acids ; 34: 102063, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38028203

RESUMO

Ferroptosis is an iron-catalyzed form of regulated cell death that results from the accumulation of lipid peroxidation products and reactive oxygen species to a lethal content. However, the transcriptional regulation of ferroptosis is not well understood. Sorafenib, a standard drug for hepatocellular carcinoma (HCC), induces ferroptosis in HCC cells. In this study, we conducted a CRISPR-Cas9 library screening targeting epigenetic factors and identified coactivator-associated arginine methyltransferase 1 (CARM1) as a critical inhibitor of ferroptosis. CARM1 depletion intensified Sorafenib-induced ferroptosis, resulting in decreased cell viability, reduced cellular glutathione level, increased lipid peroxidation, and altered mitochondrial crista structure. Additionally, we investigated a CARM1 inhibitor (CARM1i) as a potential ferroptosis inducer. Combining the CARM1i with Sorafenib enhanced the induction of ferroptosis. Notably, both CARM1 knockdown and CARM1i showed cooperative effects with Sorafenib in inhibiting HCC growth in mice. The underlying mechanism involves CARM1-catalyzed H3R26me2a on the promoter of glutathione peroxidase 4, leading to its transcriptional activation and subsequent ferroptosis inhibition. Furthermore, Sorafenib treatment induced the transcription of CARM1 through the MDM2-p53 axis. In summary, our findings establish CARM1 as a critical ferroptosis inhibitor and highlight the potential of CARM1is as novel ferroptosis inducers, providing promising therapeutic strategies for HCC treatment.

17.
Mol Ther Nucleic Acids ; 33: 599-616, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37637207

RESUMO

IL-12 is a potent cytokine for cancer immunotherapy. However, its systemic delivery as a recombinant protein has shown unacceptable toxicity in the clinic. Currently, the intratumoral injection of IL-12-encoding mRNA or DNA to avoid such side effects is being evaluated in clinical trials. In this study, we aimed to improve this strategy by further favoring IL-12 tethering to the tumor. We generated in vitro transcribed mRNAs encoding murine single-chain IL-12 fused to diabodies binding to CSF1R and/or PD-L1. These targeted molecules are expressed in the tumor microenvironment, especially on myeloid cells. The binding capacity of chimeric constructs and the bioactivity of IL-12 were demonstrated in vitro and in vivo. Doses as low as 0.5 µg IL-12-encoding mRNA achieved potent antitumor effects in subcutaneously injected B16-OVA and MC38 tumors. Treatment delivery was associated with increases in IL-12p70 and IFN-γ levels in circulation. Fusion of IL-12 to the diabodies exerted comparable efficacy against bilateral tumor models. However, it achieved tethering to myeloid cells infiltrating the tumor, resulting in nearly undetectable systemic levels of IL-12 and IFN-γ. Overall, tethering IL-12 to intratumoral myeloid cells in the mRNA-transferred tumors achieves similar efficacy while reducing the dangerous systemic bioavailability of IL-12.

18.
Front Mol Biosci ; 9: 879000, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874613

RESUMO

Rapamycin is an immunosuppressant macrolide that exhibits anti-proliferative properties through inhibiting the mTOR kinase. In fact, the drug first associates with the FKBP12 enzyme before interacting with the FRB domain of its target. Despite the availability of structural and thermodynamic information on the interaction of FKBP12 with rapamycin, the energetic and mechanistic understanding of this process is still incomplete. We recently reported a multiple-walker umbrella sampling simulation approach to characterizing the protein-protein interaction energetics along curvilinear paths. In the present paper, we extend our investigations to a protein-small molecule duo, the FKBP12•rapamycin complex. We estimate the binding free energies of rapamycin with wild-type FKBP12 and two mutants in which a hydrogen bond has been removed, D37V and Y82F. Furthermore, the underlying mechanistic details are analyzed. The calculated standard free energies of binding agree well with the experimental data, and the roles of the hydrogen bonds are shown to be quite different for each of these two mutated residues. On one hand, removing the carboxylate group of D37 strongly destabilizes the association; on the other hand, the hydroxyl group of Y82 is nearly unnecessary for the stability of the complex because some nonconventional, cryptic, indirect interaction mechanisms seem to be at work.

19.
Int Rev Cell Mol Biol ; 369: 45-70, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35777864

RESUMO

The recent clinical approval of different Bi-specific antibodies (BsAbs) has revealed the great therapeutic potential of this novel class of biologicals. For example, the bispecific T-cell engager (BiTE), Blinatumomab, demonstrated the unique capacity of BsAbs to link T-cells with tumor cells, inducing targeted tumor cell removal. Additionally, Amivantamab, recognizing the EGFR and cMet in cis, revealed a substantial improvement of therapeutic efficacy by concomitantly targeting two tumor antigens. Cis-targeting BsAbs furthermore allow discerning cell populations which concurrently express two antigens, for which each antigen expression pattern in itself might not be selective. In this way, BsAbs harbor the great prospect of being more specific and showing fewer side effects than monoclonal antibodies. Nevertheless, BsAbs have also faced major obstacles, for instance, in ensuring reliable assembly and clinical-grade purification. In this review, we summarize the different available antibody platforms currently used for the generation of IgG-like and non-IgG-like BsAbs and explain which approaches have been used to assemble those BsAbs which are currently approved for clinical application. By focusing on the example of regulatory T-cells (Tregs) and the different, ongoing approaches to develop BsAbs specifically targeting Tregs within the tumor microenvironment, our review highlights the huge potential as well as the pitfalls BsAb face in order to emerge as one of the most effective therapeutic biologicals targeting desired cell populations in a highly selective way. Such BsAb may improve treatment efficacy and reduce side effects, thereby opening novel treatment opportunities for a range of different diseases, such as cancer or autoimmune diseases.


Assuntos
Doenças Autoimunes , Neoplasias , Anticorpos Biespecíficos , Anticorpos Monoclonais , Humanos , Neoplasias/tratamento farmacológico , Microambiente Tumoral
20.
Cancer Gene Ther ; 29(7): 918-929, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34453123

RESUMO

microRNAs (miRNAs or miRs) can be delivered from acute myeloid leukemia (AML) cells to hematopoietic stem cells (HSCs) to regulate hematopoietic function via extracellular vesicles (EVs). In this study, we investigated the roles played by EVs that transport miR-548ac from AML cells in normal hematopoiesis. Bioinformatics analysis demonstrated that miR-548ac was highly expressed in AML-derived EVs. The expression of miR-548ac and TRIM28 and the targeting relationship were identified, and the results demonstrated that the expression of miR-548ac was upregulated in AML cell lines and AML cell-secreted EVs compared with CD34+ HSCs. AML-derived EVs targeted CD34+ HSCs to induce decreased expression of TRIM28 and downstream activation of STAT3. Exosomal miR-548ac was transferred into CD34+ HSCs to target TRIM28. Through gain- and loss-of-function assays, it was observed that the abrogated expression of miR-548ac or STAT3 promoted colony-forming units (CFU), whereas overexpressed miR-548ac repressed CFU, which was rescued by overexpression of TRIM28. Taken together, these results indicated that miR-548ac delivered by AML cell-derived EVs inhibits hematopoiesis via TRIM28-dependent STAT3 activation.


Assuntos
Vesículas Extracelulares , Leucemia Mieloide Aguda , MicroRNAs , Fator de Transcrição STAT3 , Proteína 28 com Motivo Tripartido , Antígenos CD34 , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , MicroRNAs/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Proteína 28 com Motivo Tripartido/genética , Proteína 28 com Motivo Tripartido/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA