Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomacromolecules ; 25(5): 3153-3162, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38693895

RESUMO

A photoacoustic (PA) imaging technique using the second near-infrared (NIR-II) window has attracted more and more attention because of its merits of deeper penetration depth and higher signal-to-noise (S/N) ratio than that using the first near-infrared (NIR-I) one. However, the design and development of high-performance PA imaging contrast agents in the NIR-II window is still a challenge. A semiconducting polymer, constructed by asymmetric units, exhibits regiorandom characteristics that effectively increase the distortion of the backbone. This increase in the degree of twist can regulate the twisted intramolecular charge transfer (TICT) effect, resulting in an enhancement of the PA signal. In this paper, an asymmetric structural acceptor strategy is developed to improve the PA signals of the resulting semiconducting polymer (PATQ-MP) in the NIR-II window with improved brightness, higher S/N ratio, and better photothermal conversion efficiency compared to polymers with the same main-chain structure containing a symmetric acceptor. DFT analysis showed that PATQ-MP containing an asymmetric acceptor monomer had a larger dihedral angle, which effectively improved the PA signal intensity by enhancing the TICT effect. The PEG-encapsulated PATQ-MP nanoparticles exhibit promising performance in the PA imaging of mouse tumors in vivo, demonstrating the clear identification of microvessels as small as 100 µm along with rapid metabolism within a span of 5 h. Therefore, this work provides a unique molecular design strategy for improving the signal intensity of PA imaging in the NIR-II window.


Assuntos
Técnicas Fotoacústicas , Polímeros , Semicondutores , Técnicas Fotoacústicas/métodos , Animais , Camundongos , Polímeros/química , Quinoxalinas/química , Feminino , Humanos , Tiadiazóis/química , Raios Infravermelhos , Camundongos Nus , Camundongos Endogâmicos BALB C , Meios de Contraste/química
2.
Macromol Rapid Commun ; 42(7): e2000683, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33350003

RESUMO

The electron-deficient ester group substitution in the sidechain of the commonly used electron-withdrawing quinoxaline (Qx) unit is seldom studied, while ester-substituted Qx units possess easy syntheses and facile modulation of the polymer solubility, and the enhanced electron-withdrawing property of ester substituted Qx unit can theoretically broaden the optical absorption of the resulting polymers and improve the open circuit voltage in the corresponding organic solar cells (OSCs). In this work, a novel ester-substituted Qx-based narrow bandgap polymer (NBG) donor material PBDTT-EFQx, which exhibits an absorption edge of 790 nm (bandgap < 1.6 eV), is designed and synthesized. Results show that the OSCs composed of PBDTT-EFQx and PC71 BM present the highest power conversion efficiency (PCE) of 6.8%, compared to PCEs of 5.0% for PBDTT-EFQx:ITIC based devices and 4.1% for PBDTT-EFQx:N2200 based devices, respectively. Characterizations and analyses indicate that the PC71 BM-based OSCs have well-matched energy levels, better complementary light absorption, the highest and most balanced carrier mobilities, as well as the lowest degree of recombination losses, and therefore, leading to the highest PCE among the three types of OSCs. This work reveals that the ester-substituted quinoxaline unit is one of the potential building blocks for NBG polymer donors.


Assuntos
Energia Solar , Ésteres , Polímeros , Quinoxalinas , Luz Solar
3.
Chemphyschem ; 21(9): 908-915, 2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32150322

RESUMO

For all-polymer solar cells which are composed of polymer donors and polymer acceptors, the effect of alkyl side chains on photovoltaic performance is a matter of some debate, and this effect remains difficult to forecast. In this concise contribution, we demonstrate that three alkyls namely branched alkyl 2-butyloctyl (2BO), long linear alkyl n-dodecyl (C12), and double-short linear alkyl n-hexyls (DC6) incorporated into the side chains of large bandgap polymer donor PBDT-TTz can induce considerable, of significance, and different electronic, optical, and morphological parameters. Systematic studies shed light on the critical role of the double-short linear alkyl n-hexyls (DC6) in (i) producing large ionization potential value, (ii) increasing propensity of the polymer to order along the π-stacking direction, (iii) generating polymer crystallites with more preferential "face-on" orientation, consequently, (iv) improvement of carriers transportation, (v) suppression of charge recombination, (vi) reduction of energy loss in all-polymer devices. In parallel, we unearth that the PBDT-TTz with double-short linear alkyl n-hexyls (DC6) represents the highest efficiency of 8.3 %, whereas, the other two PBDT-TTz analogues (2BO, C12) yield efficiencies of less than 3 % in optimized all-polymer solar cells. Though branched or long linear alkyl side chains (2BO, C12) have been applied to provide the solution processability of conjugated polymers, motifs bearing multiple short linear alkyl substituents (DC6) are proved critical to the development of high performing polymers.

4.
Org Biomol Chem ; 18(32): 6357-6363, 2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32760945

RESUMO

The development of a novel near-infrared (NIR) probe for the detection of toxic Hg2+ in organisms with high selectivity and sensitivity is of great interest but remains a great challenge. Hence, in this work, a new NIR fluorescence enhanced sensor (TBBA), which contains a D-A structure as the NIR fluorophore and rhodanine-3-acetic acid as the receptor, has been developed for the detection of Hg2+ with high selectivity, sensitivity, low limit of detection (13.10 nM) and good binding constant (2.37 × 104 M-1). The mechanism of TBBA response to Hg2+ was further proved by 1H NMR titration, HRMS, and theoretical calculations. Furthermore, TBBA is applied as a fluorescent probe for imaging living cells and zebrafish, indicating that it can be potentially applied for Hg2+ sensing in both environmental and biology fields.


Assuntos
Corantes Fluorescentes/química , Mercúrio/análise , Imagem Óptica , Tiadiazóis/química , Animais , Linhagem Celular , Corantes Fluorescentes/síntese química , Humanos , Raios Infravermelhos , Estrutura Molecular , Tiadiazóis/síntese química , Peixe-Zebra
5.
Am J Physiol Gastrointest Liver Physiol ; 316(5): G598-G607, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30817182

RESUMO

This study was conducted to observe the effect and possible mechanism of TO901317 in vivo and in vitro to provide a new basis for the targeted therapy of hepatocellular carcinoma (HCC). The expressions of liver X receptor (LXR)-α, glucose transporter (Glut)-1, proliferating cell nuclear antigen (PCNA), and matrix metalloproteinase (MMP)-9 were analyzed from HCC public database (NCBI PubMed database). The result showed that LXRα was downregulated, whereas Glut1, PCNA, and MMP9 were upregulated in human HCC compared with normal liver. Furthermore, LXRα mRNA was negatively correlated with Glut1 mRNA. At the same time, HCC cells were cultivated in vitro and axillary injected in nude mice to establish the xenograft model. The xenograft in the TO901317-treated group was slower and smaller than the control group. The protein expression of LXRα, Glut1, and MMP9 could be detected by Western blot and glucose level. As a result, TO901317 could inhibit the cell proliferation of HCC in a dose-dependent manner by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. With the increase of TO901317 concentration, the cellular glucose concentration and ATP level were gradually decreased. Western blot results showed TO901317 could upregulate LXRα expression but downregulate MMP9 and Glut1 expression. Transwell and wound-healing analysis confirmed that, by increasing the concentration of TO901317, the cell invasion and migration were both decreased. LXRα small-interfering RNA (siRNA) could relieve the suppression effect of TO901317 on the cell invasion and migration and the expression of LXRα, Glut1, and MMP9. The glucose concentration was also raised. TO901317 could repress the progress of HCC cells by reducing the glucose concentration, upregulating LXRα expression, but downregulating the expression of Glut1 and MMP9. NEW & NOTEWORTHY This subject confirmed that TO901317, a specific liver X receptor agonist, could inhibit the progression of liver cancer through upregulating liver X receptor-α, downregulating the expression of glucose transporter-1 and matrix metalloproteinase-9, and decreasing the glucose content in SMMC-7721 and HepG2 cells.


Assuntos
Carcinoma Hepatocelular , Transportador de Glucose Tipo 1/metabolismo , Hidrocarbonetos Fluorados/farmacologia , Neoplasias Hepáticas , Receptores X do Fígado/metabolismo , Sulfonamidas/farmacologia , Animais , Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Nus , Antígeno Nuclear de Célula em Proliferação/metabolismo , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Chem Commun (Camb) ; 59(62): 9529-9532, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37458076

RESUMO

An electron acceptor based on a quinoidal dipyrrolopyrazinedione core was synthesized for organic solar cells and photodetectors. A power conversion efficiency of 6.7% and a specific detectivity of 4.1 × 1013 Jones at 800 nm have been obtained, suggesting the promising prospects of quinoidal molecules for optoelectronic devices.

7.
ACS Appl Mater Interfaces ; 15(24): 29341-29351, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37294863

RESUMO

Polythiophenes (PTs) are promising electron donors in organic solar cells (OSCs) due to their simple structures and excellent synthetic scalability. Benefiting from the rational molecular design, the power conversion efficiency (PCE) of PT solar cells has been greatly improved. Herein, five batches of the champion PT (P5TCN-F25) with molecular weights ranging from 30 to 87 kg mol-1 were prepared, and the effect of the molecular weight on the blend film morphology and photovoltaic performance of PT solar cells was systematically investigated. The results showed that the PCEs of the devices improved first and then maintained a high value with the increase of molecular weight, and the highest PCE of 16.7% in binary PT solar cells was obtained. Further characterizations revealed that the promotion in photovoltaic performance mainly comes from finer phase separation structures and more compact molecular packing in the blend film. The best device stabilities were also achieved by polymers with high molecular weights. Overall, this study highlights the importance of optimizing the molecular weight for PTs and offers directions to further improve the PCE of PT solar cells.

8.
Dalton Trans ; 52(37): 13358-13366, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37671899

RESUMO

Six phosphorescence-emitting metal-organic mononuclear Cu(I) complexes, namely four quinoline-containing three-coordinate Cu(I) complexes and two N-heterocyclic carbene-containing four-coordinate Cu(I) complexes, have been successfully developed and fully characterized. All these Cu(I) complexes include the same bis(2-diphenylphosphinophenyl)ether bidentate auxiliary ligand. Significantly, four-coordinate Cu(I) complexes 1 and 2 display typical aggregation-induced emission phenomena. Their solid samples of luminogenic complexes 1-6 emit a variety of different phosphorescence. Furthermore, solid-state phosphorescence of these Cu(I) complexes can be effectively manipulated by external mechanical force. Remarkably, luminophores 1, 2 and 5 exhibit blue-shifted mechanoluminochromism responses, while luminophores 3, 4 and 6 present red-shifted mechanoluminochromism characteristics. All of the observed mechano-responsive phosphorescence changes of solids 1-6 are reversible by the method of solvent fuming. Powder X-ray diffraction results confirm that the reversible mechanically induced phosphorescence changes of complexes 1-6 are due to the mutual transformation of ordered crystalline and metastable amorphous states.

9.
Front Chem ; 10: 842712, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281566

RESUMO

Photoacoustic (PA) imaging has received more and more attention on disease diagnosis and fundamental scientific research. It is still challenging to amplify their imaging ability and reduce the toxicity of inorganic materials and exogenous contrast agents. Semiconducting polymer nanoparticles (SPNs), as a new type of contrast agent, have the advantages of low toxicity, flexible structure adjustment, good photostability, and excellent photothermal conversion efficiency. SPNs containing benzo(1,2-c;4,5-c')bis(1,2,5)thiadiazole (BBT) units, as the most classic second near-infrared window (NIR-II, 1,000-1700 nm) PA contrast agents, can achieve light absorption in the NIR-II region, thereby effectively reducing light loss in biological tissues and improving imaging resolution. This mini review summarizes the recent advances in the design strategy of BBT and its derivative-based semiconducting polymer nanoparticles for second near-infrared photoacoustic imaging. The evolution process of BBT blocks provides a unique perspective for the design of high-performance NIR-II PA contrast agents.

10.
Front Chem ; 8: 255, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411657

RESUMO

Two narrow band gap conjugated ternary copolymers comprising two electron-rich (donor, D) and one electron-deficient (acceptor, A) moieties regularly alternating along the polymer backbone were designed and synthesized. The polymers with the repeating unit in a D1-A-D2-A manner were constructed by copolymerizing a bisstannyled-D1 (D1 = n-alkyl-substituted cyclopentadithiophene) and a dibromo-monomer (Br-A-D2-A-Br, D2 = branched-alkyl-substituted cyclopentadithiophene, A =[1,2,5]selenadiazolo[3,4-c]pyridine or 5-fluorobenzo[c][1,2,5]selenadiazole) through a palladium-catalyzed Stille polymerization. This approach that enables variations in the donor fragment substituents can not only control the polymer regiochemistry but also the solubility. Two ternary copolymers exhibited absorbance up to near-infrared region along with relatively narrow band gap in the range of 1.02-1.26 eV. The polymeric photovoltaic cells based on CDTPSE/PC61BM show the short circuit density of 1.45 mA cm-2, open current voltage of 0.53 V, and photocurrent spectra response from 300 to 1,150 nm under AM 1.5 simulator (100 mW cm-2). It is indicated that it can be potentially applied to near infrared photodetectors.

11.
Oncol Lett ; 15(5): 7817-7827, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29725473

RESUMO

Diallyl disulfide (DADS), a volatile component of garlic oil, has various biological properties, including antioxidant, antiangiogenic and anticancer effects. The present study aimed to explore novel targets of DADS that may slow or stop the progression of breast cancer. First, xenograft tumor models were created by subcutaneously injecting MCF-7 and MDA-MB-231 breast cancer cells into nude mice. Subsequently, western blot analysis was performed to investigate the expression of tristetraprolin (TTP), urokinase-type plasminogen activator (uPA) and matrix metalloproteinase-9 (MMP-9) in the xenograft tumors, and cell cultures. Tablet cloning, Transwell and wound healing assays revealed that DADS treatment significantly inhibited the proliferation, invasion and migration of breast cancer cells. In addition, DADS treatment led to significant downregulation of uPA and MMP-9 protein expression, but significantly upregulated TTP expression in vivo and in vitro. Knocking down TTP expression using small interfering RNA reversed the aforementioned effects of DADS, which suggests TTP is a key target of DADS in inhibiting the progression of breast cancer.

12.
Mol Clin Oncol ; 8(1): 9-14, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29399345

RESUMO

ATP-binding cassette transporter A1 (ABCA1) has been found to mediate the transfer of cellular cholesterol across the plasma membrane to apolipoprotein A-I (apoA-I), and is essential for the synthesis of high-density lipoprotein. Mutations of the ABCA1 gene may induce Tangier disease and familial hypoalphalipoproteinemia; they may also lead to loss of cellular cholesterol homeostasis in prostate cancer, and increased intracellular cholesterol levels are frequently found in prostate cancer cells. Recent studies have demonstrated that ABCA1 may exert anticancer effects through cellular cholesterol efflux, which has been attracting increasing attention in association with prostate cancer. The aim of the present review was to focus on the current views on prostate cancer progression and the various functions of ABCA1, in order to provide new therapeutic targets for prostate cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA