Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(5): 056301, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38364160

RESUMO

Recent experiments reported an antisymmetric planar Hall effect, where the Hall current is odd in the in plane magnetic field and scales linearly with both electric and magnetic fields applied. Existing theories rely exclusively on a spin origin, which requires spin-orbit coupling to take effect. Here, we develop a general theory for the intrinsic planar Hall effect (IPHE), highlighting a previously unknown orbital mechanism and connecting it to a band geometric quantity-the anomalous orbital polarizability (AOP). Importantly, the orbital mechanism does not request spin-orbit coupling, so sizable IPHE can occur and is dominated by an orbital contribution in systems with weak spin-orbit coupling. Combined with first-principles calculations, we demonstrate our theory with quantitative evaluation for bulk materials TaSb_{2}, NbAs_{2}, and SrAs_{3}. We further show that AOP and its associated orbital IPHE can be greatly enhanced at topological band crossings, offering a new way to probe topological materials.

2.
Phys Rev Lett ; 132(10): 106601, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38518320

RESUMO

It has been theoretically predicted that perturbation of the Berry curvature by electromagnetic fields gives rise to intrinsic nonlinear anomalous Hall effects that are independent of scattering. Two types of nonlinear anomalous Hall effects are expected. The electric nonlinear Hall effect has recently begun to receive attention, while very few studies are concerned with the magneto-nonlinear Hall effect. Here, we combine experiment and first-principles calculations to show that the kagome ferromagnet Fe_{3}Sn_{2} displays such a magneto-nonlinear Hall effect. By systematic field angular and temperature-dependent transport measurements, we unambiguously identify a large anomalous Hall current that is linear in both applied in-plane electric and magnetic fields, utilizing a unique in-plane configuration. We clarify its dominant orbital origin and connect it to the magneto-nonlinear Hall effect. The effect is governed by the intrinsic quantum geometric properties of Bloch electrons. Our results demonstrate the significance of the quantum geometry of electron wave functions from the orbital degree of freedom and open up a new direction in Hall transport effects.

3.
Phys Rev Lett ; 130(12): 126303, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37027844

RESUMO

We propose an intrinsic nonlinear planar Hall effect, which is of band geometric origin, independent of scattering, and scales with the second order of electric field and first order of magnetic field. We show that this effect is less symmetry constrained compared with other nonlinear transport effects and is supported in a large class of nonmagnetic polar and chiral crystals. Its characteristic angular dependence provides an effective way to control the nonlinear output. Combined with first-principles calculations, we evaluate this effect in the Janus monolayer MoSSe and report experimentally measurable results. Our work reveals an intrinsic transport effect, which offers a new tool for material characterization and a new mechanism for nonlinear device application.

4.
Phys Rev Lett ; 130(16): 166302, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37154629

RESUMO

We propose a time-reversal-even spin generation in second order of electric fields, which dominates the current induced spin polarization in a wide class of centrosymmetric nonmagnetic materials, and leads to a novel nonlinear spin-orbit torque in magnets. We reveal a quantum origin of this effect from the momentum space dipole of the anomalous spin polarizability. First-principles calculations predict sizable spin generations in several nonmagnetic hcp metals, in monolayer TiTe_{2}, and in ferromagnetic monolayer MnSe_{2}, which can be detected in experiment. Our work opens up the broad vista of nonlinear spintronics in both nonmagnetic and magnetic systems.

5.
Phys Rev Lett ; 128(11): 116802, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35363008

RESUMO

Symmetry plays a key role in modern physics, as manifested in the revolutionary topological classification of matter in the past decade. So far, we seem to have a complete theory of topological phases from internal symmetries as well as crystallographic symmetry groups. However, an intrinsic element, i.e., the gauge symmetry in physical systems, has been overlooked in the current framework. Here, we show that the algebraic structure of crystal symmetries can be projectively enriched due to the gauge symmetry, which subsequently gives rise to new topological physics never witnessed under ordinary symmetries. We demonstrate the idea by theoretical analysis, numerical simulation, and experimental realization of a topological acoustic lattice with projective translation symmetries under a Z_{2} gauge field, which exhibits unique features of rich topologies, including a single Dirac point, Möbius topological insulator, and graphenelike semimetal phases on a rectangular lattice. Our work reveals the impact when gauge and crystal symmetries meet together with topology and opens the door to a vast unexplored land of topological states by projective symmetries.

6.
Phys Rev Lett ; 127(27): 277202, 2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35061417

RESUMO

Response properties that are purely intrinsic to physical systems are of paramount importance in physics research, as they probe fundamental properties of band structures and allow quantitative calculation and comparison with experiment. For anomalous Hall transport in magnets, an intrinsic effect can appear at the second order to the applied electric field. We show that this intrinsic second-order anomalous Hall effect is associated with an intrinsic band geometric property-the dipole moment of Berry-connection polarizability (BCP) in momentum space. The effect has scaling relation and symmetry constraints that are distinct from the previously studied extrinsic contributions. Particularly, in antiferromagnets with PT symmetry, the intrinsic effect dominates. Combined with first-principles calculations, we demonstrate the first quantitative evaluation of the effect in the antiferromagnet Mn_{2}Au. We show that the BCP dipole and the resulting intrinsic second-order conductivity are pronounced around band near degeneracies. Importantly, the intrinsic response exhibits sensitive dependence on the Néel vector orientation with a 2π periodicity, which offers a new route for electric detection of the magnetic order in PT-invariant antiferromagnets.

7.
Phys Rev Lett ; 125(14): 143001, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33064518

RESUMO

Unconventional Weyl points (WPs), carrying topological charge 2 or higher, possess interesting properties different from ordinary charge-1 WPs, including multiple Fermi arcs that stretch over a large portion of the Brillouin zone. Thus far, such WPs have been observed in chiral materials and acoustic metamaterials, but there has been no clean demonstration in photonics in which the unconventional photonic WPs are separated from trivial bands. We experimentally realize an ideal symmetry-protected photonic charge-2 WP in a three-dimensional topological chiral microwave metamaterial. We use field mapping to directly observe the projected bulk dispersion, as well as the two long surface arcs that form a noncontractible loop wrapping around the surface Brillouin zone. The surface states span a record-wide frequency window of around 22.7% relative bandwidth. We demonstrate that the surface states exhibit a novel topological self-collimation property and are robust against disorder. This work provides an ideal photonic platform for exploring fundamental physics and applications of unconventional WPs.

8.
Ibrain ; 10(2): 134-145, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915947

RESUMO

This study aimed to evaluate the efficacy and safety of remimazolam for intraoperative sedation during regional anesthesia. It was a phase II-multicenter, randomized, single-blind, parallel-group, active-controlled clinical trial (No. ChiCTR2100054956). From May 6, 2021 to July 4, 2021, patients were randomly enrolled from 17 hospitals in China. A total of 105 patients aged 18-65 years who underwent selective surgery under regional anesthesia were included. Patients received different sedatives with different dosages: 0.1 mg/kg remimazolam (HR), 0.05 mg/kg remimazolam (LR), or 1.0 mg/kg propofol (P) group, followed by a maintenance infusion. Main outcome measures included the efficacy of sedation measured by Modified Observer's Assessment of Alertness/Sedation Scale (MOAA/S) levels (1-4, 1-3, 2-3, 3, and 2-4) during the sedation procedure (the duration percentage) and incidence of adverse reactions. It showed that the duration percentage of MOAA/S levels 1-4 was 100.0 [8.1]% (median [interquartile range]), 89.9 [20.2]%, 100.0 [7.7]% in the HR, LR, and P groups, respectively. The percentage of patients in the HR, LR, and P groups who achieved MOAA/S levels 1-4 within 3 min after administration was 85.7%, 58.8%, and 82.9%, respectively. However, the time to recovery from anesthesia after withdrawal of sedatives (7.9 ± 5.7 min), incidence of anterograde amnesia (75%), and adverse effects were not statistically significant among the three groups. These findings suggest that a loading dose of remimazolam 0.1 mg/kg followed by a maintenance infusion of 0-3 mg/kg/h provides adequate sedation for patients under regional anesthesia without increasing adverse reactions.

9.
Nat Commun ; 13(1): 7218, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36433968

RESUMO

Topological boundary states are well localized eigenstates at the boundary between two different bulk topologies. As long as bulk topology is preserved, the topological boundary mode will endure. Here, we report topological nonlinear parametric amplification of light in a dimerized coupled waveguide system based on the Su-Schrieffer-Heeger model with a domain wall. The good linear transmission properties of the topological waveguide arising from the strong localization of light to the topological boundary is demonstrated through successful high-speed transmission of 30 Gb/s non-return-to-zero and 56 Gb/s pulse amplitude 4-level data. The strong localization of a co-propagating pump and probe to the boundary waveguide is harnessed for efficient, low power optical parametric amplification and wavelength conversion. A nonlinear tuning mechanism is shown to induce chiral symmetry breaking in the topological waveguide, demonstrating a pathway in which Kerr nonlinearities may be applied to tune the topological boundary mode and control the transition to bulk states.

10.
Cancer Biomark ; 24(2): 159-172, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30614803

RESUMO

BACKGROUND: A growing body of studies have demonstrated the aberrant expression of microRNAs (miRNAs) contributes to human tumor metastasis. MicroRNA-124-3p (miR-124-3p), which is down-regulated in various cancers, has been found to be involved in several signaling pathways relevant to tumor cell migration and invasion. However, the roles of miR-124-3p in human bladder cancer remain unclear. This study aims to investigate the functional significance of miR-124-3p and to understand how it targets the integrin receptor, and thus affects the progression of human bladder cancer. METHODS: Clinical specimens from 36 patients and three human bladder cancer cell lines were analyzed for miR-124-3p and integrin α3 (ITGA3) . To investigate the effects of miR-124-3p and ITGA3 on proliferation of bladder cancer cells, the MTT assay, colon-formation assay and flow cytometry were performed. In addition, wound healing assay and transwell assay were carried out to examine the migration and invasion of the bladder cancer cells transfected with miR-124-3p mimics or si-ITGA3. The luciferase reporter assay, quantitative real-time polymerase chain reaction (qRT-PCR) and western blot were applied to validate the miR-124-3p directly binding with ITGA3. Finally, western blot was used to examine the expression level of the proteins involved in FAK/PI3K/AKT and FAK/Src signal pathway as well as epithelial-mesenchymal transition (EMT) process. RESULTS: The down-regulation of miR-124-3p and up-regulation of ITGA3 were observed in clinical specimens and bladder cancer cell lines. Overexpression of miR-124-3p or silencing ITGA3 inhibited tumor cell migration and invasion. Luciferase assay confirmed miR-124-3p directly targets ITGA3, and western blot suggested that miR-124-3p plays a crucial role in the EMT and metastasis of human bladder cancer through FAK/PI3K/AKT and FAK/Src signaling mechanism. Also, by targeting ITGA3, miR-124-3p can modulate the expression of N- and E-cadherin, and thus inhibit the EMT. CONCLUSIONS: By targeting ITGA3 and downstream FAK/PI3K/AKT and FAK/Src signaling pathways, miR-124-3p suppresses cell migration and invasion in bladder cancer. Our study reasonably speculates that miR-124-3p can be potentially developed as a therapeutic target and prognostic biomarker for bladder cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Integrina alfa3/metabolismo , Transdução de Sinais/genética , Neoplasias da Bexiga Urinária/patologia , Apoptose , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Transição Epitelial-Mesenquimal , Proteínas da Matriz Extracelular , Feminino , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Integrina alfa3/genética , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Metástase Neoplásica/genética , Ligação Proteica , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA