Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 40(33): 17786-17795, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39120944

RESUMO

Exploring nucleation pathways has been a research hot spot in the fields of crystal engineering. In this work, vanillin as a model compound was utilized to explore the factors influencing different nucleation pathways with or without liquid-liquid phase separation (LLPS). A thermodynamic phase diagram of vanillin in the mixed solvent system of water and acetone from 10 to 55 °C was determined. It was found that the occurrence of LLPS might be related to different nucleation pathways. Under the guidance of a thermodynamic phase diagram, Raman spectroscopy and molecular simulation were applied to investigate the influencing factors of different nucleation paths. It was found that the degree of solvation is a key factor determining the nucleation path, and strong solvation could lead to LLPS. Additionally, the molecular self-assembly evolution during the crystallization process was further investigated by using small-angle X-ray scattering (SAXS) and dynamic light scattering (DLS). The findings indicate that larger clusters with a diffuse transition layer may lead to LLPS during the nucleation process.

2.
ACS Appl Mater Interfaces ; 16(30): 38905-38915, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38988011

RESUMO

Self-assembled supermolecular hydrogels of therapeutic agents without structural modification are of great significance in biomedical applications. Nevertheless, the complex conformations and elusive interactions of therapeutic molecules limit the controlled assembly of hydrogels. Molecules at the interface might have different arrangements and assemblies compared to those in bulk aqueous solution, which could potentially alter the selectivity of supramolecular polymorphs. However, this effect is still not well understood. Here, we demonstrate the interface-induced self-assembly of fibers for hydrogels, which is distinct from the spherical aggregates in the bulk aqueous solution, using cephradine (CEP) as a model compound. This phenomenon is caused by the packing of anisotropic molecules at the interface, and it can be applied to control the supramolecular polymorphism for the direct self-assembly of hydrogels of therapeutic agents. The interface-induced hydrogel exhibits a high degree of adjustable release and a long-acting bactericidal effect.


Assuntos
Antibacterianos , Hidrogéis , Hidrogéis/química , Hidrogéis/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA