Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Circ Res ; 134(7): e17-e33, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38420756

RESUMO

BACKGROUND: Microvascular complications are the major outcome of type 2 diabetes progression, and the underlying mechanism remains to be determined. METHODS: High-throughput RNA sequencing was performed using human monocyte samples from controls and diabetes. The transgenic mice expressing human CTSD (cathepsin D) in the monocytes was constructed using CD68 promoter. In vivo 2-photon imaging, behavioral tests, immunofluorescence, transmission electron microscopy, Western blot analysis, vascular leakage assay, and single-cell RNA sequencing were performed to clarify the phenotype and elucidate the molecular mechanism. RESULTS: Monocytes expressed high-level CTSD in patients with type 2 diabetes. The transgenic mice expressing human CTSD in the monocytes showed increased brain microvascular permeability resembling the diabetic microvascular phenotype, accompanied by cognitive deficit. Mechanistically, the monocytes release nonenzymatic pro-CTSD to upregulate caveolin expression in brain endothelium triggering caveolae-mediated transcytosis, without affecting the paracellular route of brain microvasculature. The circulating pro-CTSD activated the caveolae-mediated transcytosis in brain endothelial cells via its binding with low-density LRP1 (lipoprotein receptor-related protein 1). Importantly, genetic ablation of CTSD in the monocytes exhibited a protective effect against the diabetes-enhanced brain microvascular transcytosis and the diabetes-induced cognitive impairment. CONCLUSIONS: These findings uncover the novel role of circulatory pro-CTSD from monocytes in the pathogenesis of cerebral microvascular lesions in diabetes. The circulatory pro-CTSD is a potential target for the intervention of microvascular complications in diabetes.


Assuntos
Catepsina D , Diabetes Mellitus Tipo 2 , Monócitos , Animais , Humanos , Camundongos , Encéfalo/metabolismo , Catepsina D/metabolismo , Catepsina D/farmacologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Precursores Enzimáticos , Camundongos Transgênicos , Monócitos/metabolismo , Transcitose/fisiologia
2.
Ecotoxicol Environ Saf ; 283: 116975, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39216222

RESUMO

The contribution of plant hormones and energy-rich compounds and their metabolites (ECMs) in alleviating aluminum (Al) toxicity by elevated pH remains to be clarified. For the first time, a targeted metabolome was applied to identify Al-pH-interaction-responsive hormones and ECMs in Citrus sinensis leaves. More Al-toxicity-responsive hormones and ECMs were identified at pH 4.0 [4 (10) upregulated and 7 (17) downregulated hormones (ECMs)] than those at pH 3.0 [1 (9) upregulated and 4 (14) downregulated hormones (ECMs)], suggesting that the elevated pH improved the adaptation of hormones and ECMs to Al toxicity in leaves. The roles of hormones and ECMs in reducing leaf Al toxicity mediated by elevated pH might include the following aspects: (a) improved leaf growth by upregulating the levels of jasmonoyl-L-isoleucine (JA-ILE), 6-benzyladenosine (BAPR), N6-isopentenyladenosine (IPR), cis-zeatin-O-glucoside riboside (cZROG), and auxins (AUXs), preventing Al toxicity-induced reduction of gibberellin (GA) biosynthesis, and avoiding jasmonic acid (JA)-mediated defense; (b) enhanced biosynthesis and accumulation of tryptophan (TRP), as well as the resulting increase in biosynthesis of auxin, melatonin and secondary metabolites (SMs); (c) improved ability to maintain the homeostasis of ATP and other phosphorus (P)-containing ECMs; and (d) enhanced internal detoxification of Al due to increased organic acid (OA) and SM accumulation and elevated ability to detoxify reactive oxygen species (ROS) due to enhanced SM accumulation. To conclude, the current results corroborate the hypotheses that elevated pH reduces Al toxicity by upregulating the ability to maintain the homeostasis of ATP and other P-containing ECMs in leaves under Al toxicity and (b) hormones participate in the elevated pH-mediated alleviation of Al toxicity by positively regulating growth, the ability to detoxify ROS, and the internal detoxification of Al in leaves under Al toxicity. Our findings provide novel insights into the roles of hormones and ECMs in mitigating Al toxicity mediated by the elevated pH.

3.
Soft Matter ; 19(3): 430-435, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36541446

RESUMO

A chiral small molecule gelator (R)-H3L based on 1,1'-bi-2,2'-naphthol (BINOL)-phosphoric acid was designed and prepared, which spontaneously forms a stable water-induced gel. The gelation mechanism was revealed by single crystal X-ray diffraction analysis and a number of spectroscopic methods. Addition of Cu2+ improved the gelation ability, and the resultant metal organic gel realized visual enantioselective and chemoselective recognition toward L-histidine from enantiomers of 19 amino acids via gel collapse. The gel showed a highly sensitive response to L-histidine, and as low as 0.01 equiv. of L-histidine relative to the critical gelation concentration of (R)-H3L-Cu caused the gel to collapse. This strategy of regulating the assembly behavior through the interaction of amino acids and metal ions not only provides a simple and direct way to distinguish enantiomers, but also provides insight into how metal ions regulate the organization of biological supramolecular systems.


Assuntos
Histidina , Naftóis , Histidina/química , Naftóis/química , Estereoisomerismo , Aminoácidos/química , Aminas , Metais
4.
Nucleic Acids Res ; 49(5): 2522-2536, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33561291

RESUMO

Simultaneous dysregulation of multiple microRNAs (miRs) affects various pathological pathways related to cardiac failure. In addition to being potential cardiac disease-specific markers, miR-23b/27b/24-1 were reported to be responsible for conferring cardiac pathophysiological processes. In this study, we identified a conserved guanine-rich RNA motif within the miR-23b/27b/24-1 cluster that can form an RNA G-quadruplex (rG4) in vitro and in cells. Disruption of this intragenic rG4 significantly increased the production of all three miRs. Conversely, a G4-binding ligand tetrandrine (TET) stabilized the rG4 and suppressed miRs production in human and rodent cardiomyocytes. Our further study showed that the rG4 prevented Drosha-DGCR8 binding and processing of the pri-miR, suppressing the biogenesis of all three miRs. Moreover, CRISPR/Cas9-mediated G4 deletion in the rat genome aberrantly elevated all three miRs in the heart in vivo, leading to cardiac contractile dysfunction. Importantly, loss of the G4 resulted in reduced targets for the aforementioned miRs critical for normal heart function and defects in the L-type Ca2+ channel-ryanodine receptor (LCC-RyR) coupling in cardiomyocytes. Our results reveal a novel mechanism for G4-dependent regulation of miR biogenesis, which is essential for maintaining normal heart function.


Assuntos
Quadruplex G , MicroRNAs/química , MicroRNAs/metabolismo , Contração Miocárdica/genética , Miócitos Cardíacos/metabolismo , Animais , Benzilisoquinolinas/farmacologia , Sistemas CRISPR-Cas , Células Cultivadas , Quadruplex G/efeitos dos fármacos , Regulação da Expressão Gênica , Miocárdio/metabolismo , Miócitos Cardíacos/fisiologia , Processamento Pós-Transcricional do RNA , Proteínas de Ligação a RNA/metabolismo , Ratos , Ratos Sprague-Dawley , Ribonuclease III/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
5.
BMC Plant Biol ; 22(1): 93, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35232395

RESUMO

BACKGROUND: Many citrus orchards of south China suffer from soil acidification, which induces aluminum (Al) toxicity. The Al-immobilization in vivo is crucial for Al detoxification. However, the distribution and translocation of excess Al in citrus species are not well understood. RESULTS: The seedlings of 'Xuegan' [Citrus sinensis (L.) Osbeck] and 'Shatianyou' [Citrus grandis (L.) Osbeck], that differ in Al tolerance, were hydroponically treated with a nutrient solution (Control) or supplemented by 1.0 mM Al3+ (Al toxicity) for 21 days after three months of pre-culture. The Al distribution at the tissue level of citrus species followed the order: lateral roots > primary roots > leaves > stems. The concentration of Al extracted from the cell wall (CW) of lateral roots was found to be about 8 to 10 times higher than in the lateral roots under Al toxicity, suggesting that the CW was the primary Al-binding site at the subcellular level. Furthermore, the Al distribution in CW components of the lateral roots showed that pectin had the highest affinity for binding Al. The relative expression level of genes directly relevant to Al transport indicated a dominant role of Cs6g03670.1 and Cg1g021320.1 in the Al distribution of two citrus species. Compared to C. grandis, C. sinensis had a significantly higher Al concentration on the CW of lateral roots, whereas remarkably lower Al levels in the leaves and stems. Furthermore, Al translocation revealed by the absorption kinetics of the CW demonstrated that C. sinensis had a higher Al retention and stronger Al affinity on the root CW than C. grandis. According to the FTIR (Fourier transform infrared spectroscopy) analysis, the Al distribution and translocation might be affected by a modification in the structure and components of the citrus lateral root CW. CONCLUSIONS: A higher Al-retention, mainly attributable to pectin of the root CW, and a lower Al translocation efficiency from roots to shoots contributed to a higher Al tolerance of C. sinensis than C. grandis. The aluminum distribution and translocation of two citrus species differing in aluminum tolerance were associated with the transcriptional regulation of genes related to Al transport and the structural modification of root CW.


Assuntos
Alumínio/metabolismo , Citrus sinensis/metabolismo , Citrus/efeitos dos fármacos , Citrus/metabolismo , Alumínio/toxicidade , Transporte Biológico/genética , Citrus/genética , Citrus sinensis/efeitos dos fármacos , Citrus sinensis/genética , Regulação da Expressão Gênica de Plantas , Especificidade da Espécie , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Ecotoxicol Environ Saf ; 234: 113423, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35307619

RESUMO

'Xuegan' (Citrus sinensis) seedlings were fertilized 6 times weekly for 24 weeks with 0.5 or 350 µM CuCl2 and 2.5, 10 or 25 µM H3BO3. Cu-toxicity increased Cu uptake per plant (UPP) and Cu concentrations in leaves, stems and roots, decreased water uptake and phosphorus, nitrogen, calcium, magnesium, potassium, sulfur, boron and iron UPP, and increased the ratios of magnesium, potassium, calcium and sulfur UPP to phosphorus UPP and the ratios of leaf magnesium, potassium and calcium concentrations to leaf phosphorus concentration. Many decaying and dead fibrous roots occurred in Cu-toxic seedlings. Cu-toxicity-induced alterations of these parameters and root damage decreased with the increase of boron supply. These results demonstrated that B supplementation lowered Cu uptake and its concentrations in leaves, stems and roots and subsequently alleviated Cu-toxicity-induced damage to root growth and function, thus improving plant nutrient (decreased Cu uptake and efficient maintenance of the other nutrient homeostasis and balance) and water status. Further analysis indicated that the improved nutrition and water status contributed to the boron-mediated amelioration of Cu-toxicity-induced inhibition of seedlings, decline of leaf pigments, large reduction of leaf CO2 assimilation and impairment of leaf photosynthetic electron transport chain revealed by greatly altered chlorophyll a fluorescence (OJIP) transients, reduced maximum quantum yield of primary photochemistry (Fv/Fm), quantum yield for electron transport (ETo/ABS) and total performance index (PIabs,total), and elevated dissipated energy per reaction center (DIo/RC). To conclude, our findings corroborate the hypothesis that B-mediated amelioration of Cu-toxicity involved reduced damage to roots and improved nutrient and water status. Principal component analysis showed that Cu-toxicity-induced changes of above physiological parameters generally decreased with the increase of B supply and that B supply-induced alterations of above physiological parameters was greater in 350 µM Cu-treated than in 0.5 µM Cu-treated seedlings. B and Cu had a significant interactive influence on C. sinensis seedlings.

7.
Int J Mol Sci ; 23(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36430374

RESUMO

The contribution of reactive oxygen species (ROS) and methylglyoxal (MG) formation and removal in high-pH-mediated alleviation of plant copper (Cu)-toxicity remains to be elucidated. Seedlings of sweet orange (Citrus sinensis) were treated with 0.5 (non-Cu-toxicity) or 300 (Cu-toxicity) µM CuCl2 × pH 4.8, 4.0, or 3.0 for 17 weeks. Thereafter, superoxide anion production rate; H2O2 production rate; the concentrations of MG, malondialdehyde (MDA), and antioxidant metabolites (reduced glutathione, ascorbate, phytochelatins, metallothioneins, total non-protein thiols); and the activities of enzymes (antioxidant enzymes, glyoxalases, and sulfur metabolism-related enzymes) in leaves and roots were determined. High pH mitigated oxidative damage in Cu-toxic leaves and roots, thereby conferring sweet orange Cu tolerance. The alleviation of oxidative damage involved enhanced ability to maintain the balance between ROS and MG formation and removal through the downregulation of ROS and MG formation and the coordinated actions of ROS and MG detoxification systems. Low pH (pH 3.0) impaired the balance between ROS and MG formation and removal, thereby causing oxidative damage in Cu-toxic leaves and roots but not in non-Cu-toxic ones. Cu toxicity and low pH had obvious synergistic impacts on ROS and MG generation and removal in leaves and roots. Additionally, 21 (4) parameters in leaves were positively (negatively) related to the corresponding root parameters, implying that there were some similarities and differences in the responses of ROS and MG metabolisms to Cu-pH interactions between leaves and roots.


Assuntos
Citrus sinensis , Espécies Reativas de Oxigênio/metabolismo , Citrus sinensis/metabolismo , Aldeído Pirúvico/toxicidade , Aldeído Pirúvico/metabolismo , Cobre/toxicidade , Cobre/metabolismo , Antioxidantes/metabolismo , Peróxido de Hidrogênio/metabolismo , Raízes de Plantas/metabolismo , Concentração de Íons de Hidrogênio
8.
Int J Mol Sci ; 23(10)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35628662

RESUMO

Low pH-induced alterations in gene expression profiles and organic acids (OA) and free amino acid (FAA) abundances were investigated in sweet orange [Citrus sinensis (L.) Osbeck cv. Xuegan] leaves. We identified 503 downregulated and 349 upregulated genes in low pH-treated leaves. Further analysis indicated that low pH impaired light reaction and carbon fixation in photosynthetic organisms, thereby lowering photosynthesis in leaves. Low pH reduced carbon and carbohydrate metabolisms, OA biosynthesis and ATP production in leaves. Low pH downregulated the biosynthesis of nitrogen compounds, proteins, and FAAs in leaves, which might be conducive to maintaining energy homeostasis during ATP deprivation. Low pH-treated leaves displayed some adaptive responses to phosphate starvation, including phosphate recycling, lipid remodeling, and phosphate transport, thus enhancing leaf acid-tolerance. Low pH upregulated the expression of some reactive oxygen species (ROS) and aldehyde detoxifying enzyme (peroxidase and superoxidase) genes and the concentrations of some antioxidants (L-tryptophan, L-proline, nicotinic acid, pantothenic acid, and pyroglutamic acid), but it impaired the pentose phosphate pathway and VE and secondary metabolite biosynthesis and downregulated the expression of some ROS and aldehyde detoxifying enzyme (ascorbate peroxidase, aldo-keto reductase, and 2-alkenal reductase) genes and the concentrations of some antioxidants (pyridoxine and γ-aminobutyric acid), thus disturbing the balance between production and detoxification of ROS and aldehydes and causing oxidative damage to leaves.


Assuntos
Citrus sinensis , Citrus , Trifosfato de Adenosina/metabolismo , Aldeídos/metabolismo , Antioxidantes/metabolismo , Citrus/metabolismo , Citrus sinensis/genética , Citrus sinensis/metabolismo , Concentração de Íons de Hidrogênio , Metabolômica , Fosfatos/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , RNA-Seq , Espécies Reativas de Oxigênio/metabolismo
9.
Reprod Biomed Online ; 42(3): 589-594, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33384268

RESUMO

RESEARCH QUESTION: What are the risks associated with cryopreserved semen collected during and after the coronavirus disease 2019 (COVID-19) pandemic wave in Wuhan, China? DESIGN: Retrospective cohort study involving young adult men who were qualified sperm donors at the Hunan Province Human Sperm Bank (China) during the pandemic wave (1 January 2020 to 30 January 2020) and after the wave and return to work (7 April 2020 to 30 May 30 2020). One hundred paired semen and blood specimens from 100 donors were included. One-step single-tube nested quantitative real-time polymerase chain reaction (OSN-qRT-PCR) was used to detect SARS-CoV-2. Moreover, to control the unacceptable risk of false-negative results, a second round of screening was performed with pooled RNA from negative semen samples using crystal digital PCR (cd-PCR). RESULTS: For individual blood and semen samples, the target genes, namely the nucleocapsid protein (N) and open reading frame (ORF-1ab) genes, tested negative in all of the 100 paired samples. Further, as per cd-PCR results, there were >20,000 droplets per well in the RNA for each combined sample and no positive droplets were present for either of the aforementioned target genes. A total of 100 paired semen and blood samples from these two groups tested negative for SARS-CoV-2. CONCLUSIONS: Cryopreserved semen at the Hunan Province Human Sperm Bank during and after the COVID-19 pandemic wave was free of SARS-CoV-2 and was judged safe for external use in the future.


Assuntos
COVID-19 , Pandemias , China/epidemiologia , Humanos , Masculino , Reação em Cadeia da Polimerase em Tempo Real , Estudos Retrospectivos , SARS-CoV-2 , Sêmen , Bancos de Esperma , Espermatozoides , Adulto Jovem
10.
Cryobiology ; 100: 58-62, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33831370

RESUMO

Techniques for the cryopreservation of epididymal sperm was are widely used in clinical practice. However, given the unique characteristics of sperm from patients with obstructive azoospermia, epididymal sperm cryopreservation is more difficult because of low count and weak motility; therefore, conventional methods of sperm cryopreservation may not result in the best outcomes. We used the micro-straw method to store small quantities of sperm obtained from patients with severe oligozoospermia or azoospermia and achieved successful deliveries in the previous study. This retrospective study of ICSI cycles included the first ICSI cycles of fresh or frozen/thawed epididymal sperm that were performed in patients suffering from obstructive azoospermia who were admitted to the CITIC-Xiangya Hospital of Reproduction and Genetics of China from June 1, 2015 to June 31, 2019. A total of 2441 patients with obstructive azoospermia were divided according to the use of fresh (n = 2342) or frozen/thawed (n = 99) epididymal sperm. The results showed that the fertilisation rate was higher with fresh epididymal sperm than that with frozen/thawed epididymal sperm (85.14% vs. 79.26%, respectively; p = 0.000). However, the rates of embryo cleavage, high-quality embryos, clinical pregnancy, miscarriage, singletons and birth defect were similar between fresh and frozen/thawed epididymal sperm (98.28% vs. 99.13%, 60.34% vs. 57.29%, 67.90% vs. 70.51%, 8.12% vs. 10.91%, 57.76% vs. 49.09%, 1.59% vs. 1.45%respectively; p = 0.088, 0.109, 0.628, 0.462,0.203 and 0.686). In addition, the short-term cryostorage of small quantities of epididymal sperm did not affect clinical outcomes. The results indicated that in cases of obstructive azoospermia, cryostorage of small quantities epididymal sperm is a reliable option.


Assuntos
Azoospermia , Oligospermia , China , Criopreservação/métodos , Feminino , Humanos , Masculino , Gravidez , Taxa de Gravidez , Estudos Retrospectivos , Espermatozoides , Testículo
11.
Ecotoxicol Environ Saf ; 223: 112579, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34352583

RESUMO

Limited data are available on metabolic responses of plants to copper (Cu)-toxicity. Firstly, we investigated Cu-toxic effects on metabolomics, the levels of free amino acids, NH4+-N, NO3--N, total nitrogen, total soluble proteins, total phenolics, lignin, reduced glutathione (GSH) and malondialdehyde, and the activities of nitrogen-assimilatory enzymes in 'Shatian' pummelo (Citrus grandis) leaves. Then, a conjoint analysis of metabolomics, physiology and transcriptomics was performed. Herein, 59 upregulated [30 primary metabolites (PMs) and 29 secondary metabolites (SMs)] and 52 downregulated (31 PMs and 21 SMs) metabolites were identified in Cu-toxic leaves. The toxicity of Cu to leaves was related to the Cu-induced accumulation of NH4+ and decrease of nitrogen assimilation. Metabolomics combined with physiology and transcriptomics revealed some adaptive responses of C. grandis leaves to Cu-toxicity, including (a) enhancing tryptophan metabolism and the levels of some amino acids and derivatives (tryptophan, phenylalanine, 5-hydroxy-l-tryptophan, 5-oxoproline and GSH); (b) increasing the accumulation of carbohydrates and alcohols and upregulating tricarboxylic acid cycle and the levels of some organic acids and derivatives (chlorogenic acid, quinic acid, d-tartaric acid and gallic acid o-hexoside); (c) reducing phospholipid (lysophosphatidylcholine and lysophosphatidylethanolamine) levels, increasing non-phosphate containing lipid [monoacylglycerol ester (acyl 18:2) isomer 1] levels, and inducing low-phosphate-responsive gene expression; and (d) triggering the biosynthesis of some chelators (total phenolics, lignin, l-trytamine, indole, eriodictyol C-hexoside, quercetin 5-O-malonylhexosyl-hexoside, N-caffeoyl agmatine, N'-p-coumaroyl agmatine, hydroxy-methoxycinnamate and protocatechuic acid o-glucoside) and vitamins and derivatives (nicotinic acid-hexoside, B1 and methyl nicotinate). Cu-induced upregulation of many antioxidants could not protect Cu-toxic leaves from oxidative damage. To conclude, our findings corroborated the hypothesis that extensive reprogramming of metabolites was carried out in Cu-toxic C. grandis leaves in order to cope with Cu-toxicity.


Assuntos
Citrus , Citrus/genética , Cobre/toxicidade , Metabolômica , Folhas de Planta , Plântula/genética , Transcriptoma
12.
J Assist Reprod Genet ; 38(11): 2965-2974, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34554361

RESUMO

OBJECTIVES: To examine the association between modifiable lifestyle factors and the main semen parameter values, the number of qualified sperm donors, and to provide some sensible guidance for sperm donors. METHODS: Healthy men screened as potential sperm donors were recruited in the Hunan Province Human Sperm Bank of China from March 2019 to December 2019. Participants were invited to complete interviewer-assisted questionnaires on eleven items of information. Univariate and multivariate analyses were conducted to analyze which lifestyle factors collected by the questionnaire had an impact on the eligibility and main semen parameters of sperm donors. RESULTS: The eligibility of men as sperm donors was strongly influenced by the duration of abstinence (P = 0.002). The rate of eligibility sperm donors increased significantly with the number of days of abstinence. In addition, semen volume increased with abstinence time (P = 0.000). Exercise frequency (P = 0.025) and abstinence time (P = 0.000) were positively correlated with sperm concentration, and masturbation frequency was negatively correlated with sperm concentration (P = 0.013). Progressive sperm motility was significantly affected by abstinence time (P = 0.000) and bedtime (P = 0.047). CONCLUSIONS: Abstinence time was highly associated with semen parameters and donor qualification. Increase the abstinence time before donation may be meaningful in improving the proportion of eligible sperm donors.


Assuntos
Estilo de Vida , Controle de Qualidade , Abstinência Sexual/estatística & dados numéricos , Motilidade dos Espermatozoides , Espermatozoides/química , Doadores de Tecidos/provisão & distribuição , Adulto , China , Humanos , Masculino , Fatores de Risco , Análise do Sêmen , Inquéritos e Questionários , Adulto Jovem
13.
BMC Plant Biol ; 19(1): 76, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30770733

RESUMO

BACKGROUND: Magnesium (Mg)-deficiency is one of the most prevalent physiological disorders causing a reduction in Citrus yield and quality. 'Xuegan' (Citrus sinensis) seedlings were irrigated for 16 weeks with nutrient solution containing 2 mM (Mg-sufficiency) or 0 mM (Mg-deficiency) Mg(NO3)2. Thereafter, we investigated the Mg-deficient effects on gas exchange and chlorophyll a fluorescence in the upper and lower leaves, and Mg, reactive oxygen species (ROS) and methylglyoxal (MG) metabolisms in the roots, lower and upper leaves. The specific objectives were to corroborate the hypothesis that the responses of ROS and MG metabolisms to Mg-deficiency were greater in the lower leaves than those in the upper leaves, and different between the leaves and roots. RESULTS: Mg level was higher in the Mg-deficient upper leaves than that in the Mg-deficient lower leaves. This might be responsible for the Mg-deficiency-induced larger alterations of all the measured parameters in the lower leaves than those in the upper leaves, but they showed similar change patterns between the Mg-deficient lower and upper leaves. Accordingly, Mg-deficiency increased greatly their differences between the lower and upper leaves. Most of parameters involved in ROS and MG metabolisms had similar variation trends and degrees between the Mg-deficient lower leaves and roots, but several parameters (namely glutathione S-transferase, sulfite reductase, ascorbate and dehydroascorbate) displayed the opposite variation trends. Obviously, differences existed in the Mg-deficiency-induced alterations of ROS and MG metabolisms between the lower leaves and roots. Although the activities of most antioxidant and sulfur metabolism-related enzymes and glyoxalase I and the level of reduced glutathione in the Mg-deficient leaves and roots and the level of ascorbate in the leaves were kept in higher levels, the levels of malonaldehyde and MG and/or electrolyte leakage were increased in the Mg-deficient lower and upper leaves and roots, especially in the Mg-deficient lower leaves and roots. CONCLUSIONS: The ROS and MG detoxification systems as a whole did not provide sufficient detoxification capacity to prevent the Mg-deficiency-induced production and accumulation of ROS and MG, thus leading to lipid peroxidation and the loss of plasma membrane integrity, especially in the lower leaves and roots.


Assuntos
Citrus sinensis/fisiologia , Magnésio/metabolismo , Aldeído Pirúvico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/metabolismo , Clorofila A/metabolismo , Fluorescência , Folhas de Planta/fisiologia , Raízes de Plantas/fisiologia , Plântula/fisiologia , Enxofre/metabolismo
14.
Cytokine ; 119: 37-46, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30875589

RESUMO

We examined the precise association between IL-10 levels and cardiovascular disease (CVD) prognosis and explored the pleiotropic role of IL-10 in different cardiac pathologies. We performed a meta-analysis of cross-sectional and longitudinal studies investigating IL-10 levels. Meta-regression analyses were used to determine the cause of the discrepancies. To assess publication bias, funnel plots were constructed, and Egger's tests were performed. Data from the GSE58015 dataset were used to investigate the levels of IL-10 under certain conditions. Because of substantial heterogeneity in the data used to compare the IL-10 levels between patients with CVD and healthy people, we could not determine the differences between the healthy controls and patients with ischemic or nonischemic pathologies (p > 0.05). The analysis of the association between IL-10 levels and CVD prognosis indicated that higher IL-10 levels were significantly associated with a poor prognosis in patients with nonischemic pathologies (HR = 1.10, 95% CI = 1.00-1.20, p = 0.043) but differentially associated with the prognosis of patients with ischemic pathologies based on the sampling time point (before percutaneous coronary intervention (PCI): HR = 4.90, 95% CI = 1.24-19.30, p < 0.001; after PCI: HR = 0.57, 95% CI = 0.43-0.75, p = 0.023). The meta-regression analysis showed that the pooled HR of the IL-10 levels was positively correlated with the IL-10/IL-6 ratio (ß = 0.644, p = 0.024). The funnel plots and Egger's tests revealed no statistically significant bias in our meta-analysis (p > 0.1). Furthermore, our data mining analysis supported our findings. Our analysis showed that IL-10 levels may be pleiotropically associated with the CVD prognosis possibly based on the type of pathology, disease stage and levels of other proinflammatory factors, such as IL-6.


Assuntos
Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Interleucina-10/metabolismo , Idoso , Estudos de Casos e Controles , Estudos Transversais , Feminino , Humanos , Interleucina-6/metabolismo , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Intervenção Coronária Percutânea/métodos , Prognóstico
15.
Int J Mol Sci ; 20(19)2019 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-31569546

RESUMO

Aluminum (Al) treatment significantly decreased the dry weight (DW) of stem, shoot and whole plant of both Citrus sinensis and C. grandis, but did not change that of root. Al significantly decreased leaf DW of C. grandis, increased the ratio of root to shoot and the lignin content in roots of both species. The higher content of Al in leaves and stems and lignin in roots of C. grandis than that of C. sinensis might be due to the over-expression of Al sensitive 3 (ALS3) and cinnamyl alcohol deaminase (CAD) in roots of C. grandis, respectively. By using yeast-two-hybridazation (Y2H) and bimolecular fluorescence complementation (BiFC) techniques, we obtained the results that glutathione S-transferase (GST), vacuolar-type proton ATPase (V-ATPase), aquaporin PIP2 (PIP2), ubiquitin carboxyl-terminal hydrolase 13 (UCT13), putative dicyanin blue copper protein (DCBC) and uncharacterized protein 2 (UP2) were interacted with ALS3 and GST, V-ATPase, Al sensitive 3 (ALS3), cytochrome P450 (CP450), PIP2, uncharacterized protein 1 (UP1) and UP2 were interacted with CAD. Annotation analysis revealed that these proteins were involved in detoxification, cellular transport, post-transcriptional modification and oxidation-reduction homeostasis or lignin biosynthesis in plants. Real-time quantitative PCR (RT-qPCR) analysis further revealed that the higher gene expression levels of most of these interacting proteins in C. grandis roots than that in C. sinensis ones were consistent with the higher contents of lignin in C. grandis roots and Al absorbed by C. grandis. In conclusion, our study identified some key interacting components of Al responsive proteins ALS3 and CAD, which could further help us to understand the molecular mechanism of Al tolerance in citrus plants and provide new information to the selection and breeding of tolerant cultivars, which are cultivated in acidic areas.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Alumínio/metabolismo , Aminoidrolases/metabolismo , Citrus/metabolismo , Propanóis/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Aminoidrolases/genética , Citrus/genética , Regulação Neoplásica da Expressão Gênica , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo
16.
Angew Chem Int Ed Engl ; 58(43): 15435-15440, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31448499

RESUMO

Low-dimensional lead halide perovskite materials recently have drawn much attention owing to the intriguing broadband emissions; however, the toxicity of lead will hinder their future development. Now, a lead-free (C4 H14 N2 )2 In2 Br10 single crystal with a unique zero-dimensional (0D) structure constituted by [InBr6 ]3- octahedral and [InBr4 ]- tetrahedral units is described. The single crystal exhibits broadband photoluminescence (PL) that spans almost the whole visible spectrum with a lifetime of 3.2 µs. Computational and experimental studies unveil that an excited-state structural distortion in [InBr6 ]3- octahedral units enables the formation of intrinsic self-trapped excitons (STEs) and thus contributing the broad emission. Furthermore, femtosecond transient absorption (fs-TA) measurement reveals that the ultrafast STEs formation together with an efficient intersystem crossing has made a significant contribution to the long-lived and broad STE-based emission behavior.

17.
Angew Chem Int Ed Engl ; 58(16): 5277-5281, 2019 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-30788885

RESUMO

Low-dimensional luminescent lead halide perovskites have attracted tremendous attention for their fascinating optoelectronic properties, while the toxicity of lead is still considered a drawback. Herein, we report a novel lead-free zero-dimensional (0D) indium-based perovskite (Cs2 InBr5 ⋅H2 O) single crystal that is red-luminescent with a high photoluminescence quantum yield (PLQY) of 33 %. Experimental and computational studies reveal that the strong PL emission might originate from self-trapping excitons (STEs) that result from an excited-state structural deformation. More importantly, the in situ transformation between hydrated Cs2 InBr5 ⋅H2 O and the dehydrated form is accompanied with a switchable dual emission, which enables it to act as a PL water-sensor in humidity detection or the detection of traces of water in organic solvents.

18.
J Nanosci Nanotechnol ; 18(4): 2345-2351, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29442902

RESUMO

Due to the extensive source, good biocompatibility and biodegradability, the starch of carbohydrates has been extensively investigated for application in biological field. Recently, the development of fluorescent organic nanoparticles (FONs) on the basis of aggregation induced emission (AIE) dyes has attracted great research interest. In this article, novel starch-based S-TPEV polymers with AIE property were successfully fabricated by atom transfer radical polymerization (ATRP) of TPEV dye into water-soluble starch for the first time, subsequently, their structure and properties were detailedly investigated by 1H NMR, TEM, UV-vis, FL and FTIR. The characterization results confirmed the successful synthesis of S-TPEV polymers, and the molar fraction of TPEV and C6H10O5 ring in the starch polymers could be respectively calculated as approximate 5.8% and 94.2%. In aqueous solution, the as-prepared S-TPEV polymers will tend to self-assemble into FONs with 100-200 nm diameters, and their fluorescence intensity increased with the increase of the concentration of water in the mixed solution of water and DMSO, indicative of the obvious AIE property. More importantly, owing to their high water dispersity, good fluorescence and excellent biocompatibility, the S-TPEV FONs can be uptaken by HepG2 cells and show promising application in biological imaging field.


Assuntos
Corantes Fluorescentes , Nanopartículas , Amido/química , Corantes , Diagnóstico por Imagem , Polimerização , Polímeros
19.
Ecotoxicol Environ Saf ; 158: 213-222, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-29704792

RESUMO

Little is known about the physiological and molecular responses of leaves to aluminum (Al)-toxicity. Seedlings of Al-intolerant Citrus grandis and Al-tolerant Citrus sinensis were supplied daily with nutrient solution containing 0 mM (control) and 1.0 mM (Al-toxicity) AlCl3·6H2O for 18 weeks. We found that Al-treatment only decreased CO2 assimilation in C. grandis leaves, and that the Al-induced alterations of gene expression profiles were less in C. sinensis leaves than those in C. grandis leaves, indicating that C. sinensis seedlings were more tolerant to Al-toxicity than C. grandis ones. Al concentration was similar between Al-treated C. sinensis and C. grandis roots, but it was higher in Al-treated C. grandis stems and leaves than that in Al-treated C. sinensis stems and leaves. Al-treated C. sinensis seedlings accumulated relatively more Al in roots and transported relatively little Al to shoots. This might be responsible for the higher Al-tolerance of C. sinensis. Further analysis showed that the following several aspects might account for the higher Al-tolerance of C. sinensis, including: (a) Al-treated C. sinensis leaves had higher capacity to maintain the homeostasis of energy and phosphate, the stability of lipid composition and the integrity of cell wall than did Al-treated C. grandis leaves; (b) Al-triggered production of reactive oxygen species (ROS) and the other cytotoxic compounds was less in Al-treated C. sinensis leaves than that in Al-treated C. grandis leaves, because Al-toxicity decreased CO2 assimilation only in C. grandis leaves; accordingly, more upregulated genes involved in the detoxifications of ROS, aldehydes and methylglyoxal were identified in Al-treated C. grandis leaves; in addition, flavonoid concentration was increased only in Al-treated C. grandis leaves; (c) Al-treated C. sinensis leaves could keep a better balance between protein phosphorylation and dephosphorylation than did Al-treated C. grandis leaves; and (d) both the equilibrium of hormones and hormone-mediated signal transduction were greatly disrupted in Al-treated C. grandis leaves, but less altered in Al-treated C. sinensis leaves. Finally, we discussed the differences in Al-responsive genes between Citrus roots and leaves.


Assuntos
Alumínio/toxicidade , Citrus/genética , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Parede Celular/efeitos dos fármacos , Parede Celular/genética , Parede Celular/metabolismo , Citrus/efeitos dos fármacos , Citrus/metabolismo , Relação Dose-Resposta a Droga , Flavonoides/análise , Biblioteca Gênica , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , RNA de Plantas/genética , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/metabolismo , Análise de Sequência de RNA
20.
BMC Genomics ; 16: 949, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26573913

RESUMO

BACKGROUND: Limited information is available on aluminum (Al)-toxicity-responsive proteins in woody plant roots. Seedlings of 'Xuegan' (Citrus sinensis) and 'Sour pummelo' (Citrus grandis) were treated for 18 weeks with nutrient solution containing 0 (control) or 1.2 mM AlCl3 · 6H2O (+Al). Thereafter, we investigated Citrus root protein profiles using isobaric tags for relative and absolute quantification (iTRAQ). The aims of this work were to determine the molecular mechanisms of plants to deal with Al-toxicity and to identify differentially expressed proteins involved in Al-tolerance. RESULTS: C. sinensis was more tolerant to Al-toxicity than C. grandis. We isolated 347 differentially expressed proteins from + Al Citrus roots. Among these proteins, 202 (96) proteins only presented in C. sinensis (C. grandis), and 49 proteins were shared by the two species. Of the 49 overlapping proteins, 45 proteins were regulated in the same direction upon Al exposure in the both species. These proteins were classified into following categories: sulfur metabolism, stress and defense response, carbohydrate and energy metabolism, nucleic acid metabolism, protein metabolism, cell transport, biological regulation and signal transduction, cell wall and cytoskeleton metabolism, and jasmonic acid (JA) biosynthesis. The higher Al-tolerance of C. sinensis may be related to several factors, including: (a) activation of sulfur metabolism; (b) greatly improving the total ability of antioxidation and detoxification; (c) up-regulation of carbohydrate and energy metabolism; (d) enhancing cell transport; (e) decreased (increased) abundances of proteins involved in protein synthesis (proteiolysis); (f) keeping a better balance between protein phosphorylation and dephosphorylation; and (g) increasing JA biosynthesis. CONCLUSIONS: Our results demonstrated that metabolic flexibility was more remarkable in C. sinenis than in C. grandis roots, thus improving the Al-tolerance of C. sinensis. This provided the most integrated view of the adaptive responses occurring in Al-toxicity roots.


Assuntos
Alumínio/toxicidade , Citrus sinensis/efeitos dos fármacos , Citrus sinensis/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Proteômica , Alumínio/metabolismo , Citrus sinensis/genética , Citrus sinensis/crescimento & desenvolvimento , Relação Dose-Resposta a Droga , Proteínas de Plantas/genética , Raízes de Plantas/fisiologia , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Especificidade da Espécie , Espectrometria de Massas em Tandem , Fatores de Tempo , Transcriptoma/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA