Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Fish Physiol Biochem ; 37(3): 553-65, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21188634

RESUMO

Growth hormone plays important roles in various physiological processes such as growth, metabolism, and reproduction. In this study, two cDNAs encoding growth hormone receptor (GHR) were isolated from the liver of zanzibar tilapia (Oreochromis hornornum). The two cDNAs were 2,831 and 2,044 bp in length and named GHR1 and GHR2, respectively. GHR1 and GHR2 shared 57.4% similarity in nucleotide sequences and 33.5% similarity in deduced amino acid sequences. Consequently, it was presumed that they were two different genes. Conserved regions of GHR1 and GHR2 in zanzibar tilapia were different from those of other vertebrates. For example, conserved box2 regions of GHR1 and GHR2 in zanzibar tilapia were, respectively, WVELM and WVEFT, while it was WVEFI for GHRs in other vertebrates. Similar to other fish species, GHR1 and GHR2 were expressed in brain, gill, liver, muscle, spleen, gonad, stomach, kidney, and pituitary in zanzibar tilapia. The expression levels were the highest in liver. Unlike fathead minnow (Pimephales promelas) and mossambique tilapia (O. mossambicus), the expression levels of GHR1 in most female fish tissues were higher than those in male fish. No significant difference in GHR2 expression was found in all the tissues in male and female of zanzibar tilapia. Under fasting condition, the expressions of GHRs and IGF-II were significantly up-regulated (P < 0.05) in liver, while the expression of IGF-I remained stable. This observation would contribute to understanding the evolution of the GHR family in further investigation of growth regulation of zanzibar tilapia.


Assuntos
Receptores da Somatotropina/metabolismo , Tilápia/metabolismo , Sequência de Aminoácidos , Animais , Clonagem Molecular , Feminino , Privação de Alimentos , Fígado/metabolismo , Masculino , Dados de Sequência Molecular , Filogenia , Receptores da Somatotropina/química , Receptores da Somatotropina/genética , Caracteres Sexuais
2.
J Genet ; 89(2): 163-71, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20861567

RESUMO

In this study, classical and molecular cytogenetic analyses were performed in tilapia fishes, Oreochromis mossambicus (XX/XY sex determination system), O. urolepis hornorum (WZ/ZZ sex determination system) and their hybrid by crossing O. mossambicus female x O. u. hornorum male. An identical karyotype ((2n = 44, NF (total number of chromosomal arms) = 50) was obtained from three examined tilapia samples. Genomic organization analysis of 5S rDNA revealed two different types of 5S rDNA sequences, 5S type I and 5S type II. Moreover, fluorescence in situ hybridization (FISH) with 5S rDNA probes showed six positive fluorescence signals on six chromosomes of all the analysed metaphases from the three tilapia samples. Subsequently, 45S rDNA probes were also prepared, and six positive fluorescence signals were observed on three chromosome pairs in all analysed metaphases of the three tilapia samples. The correlation between 45 rDNA localization and nucleolar organizer regions (NORs) was confirmed by silver nitrate staining in tilapia fishes. Further, different chromosomal localizations of 5S rDNA and 45S rDNA were verified by two different colour FISH probes. Briefly, the current data provide an insights for hybridization projects and breeding improvement of tilapias.


Assuntos
DNA Ribossômico/química , DNA Ribossômico/genética , RNA Ribossômico 5S/genética , Tilápia/genética , Animais , China , Mapeamento Cromossômico , Cruzamentos Genéticos , Feminino , Variação Genética , Hibridização in Situ Fluorescente , Cariotipagem , Masculino , Região Organizadora do Nucléolo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA