Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 212(Pt D): 113474, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35594960

RESUMO

Healthy aquatic ecosystems can offer basic ecological services for the sustainable development of humans and society. Water quality greatly influences the macroinvertebrate community in aquatic ecosystems and can alter the aquatic ecosystem's health status. However, the quantitative relationship between macroinvertebrate community and water quality factors in rivers remains unclear, particularly in urban rivers, which are strongly affected by human activities. Therefore, a new framework for the quantitative analysis between macroinvertebrate community and key water quality driving factors was developed in the study, meanwhile, the aquatic ecosystem health conditions were evaluated and validated by different methods. The framework was applied to a typical urban river, the North Canal River, which is regarded as the "mother river" of Beijing. Combined with the redundancy analysis (RDA) and the threshold indicator taxa analysis (TITAN), the water quality driving factors and their indicator species were identified and the corresponding response threshold was determined. Based on the benthic index of biotic integrity (B-IBI), the multi-metric rapid bioassessment method, and the biological monitoring working party (BMWP) score, the aquatic ecosystem health condition in the basin was comprehensively evaluated. The results show that fluoride, biochemical oxygen demand, ammonia-nitrogen and total phosphorus were the key water quality driving factors influencing the community structure of macroinvertebrates. Four indicator species of ammonia-nitrogen were identified by the TITAN method with a threshold range of 1.09-6.94 mg L-1, and three indicator species of total phosphorus were identified with a threshold range of 0.48-1.27 mg L-1. According to the results of the aquatic ecosystem health assessment, the river ecosystem was generally unhealthy and the upstream was better than downstream; the health condition in the mountainous areas of Changping district was the best, while that in Chaoyang district and the central city area was the worst. The framework could provide a strong basis for ecological restoration and pollution control of the urban rivers and become an important tool for the rehabilitation of aquatic ecosystems.


Assuntos
Ecossistema , Qualidade da Água , Amônia , Animais , Pequim , China , Monitoramento Ambiental/métodos , Humanos , Invertebrados , Nitrogênio , Fósforo
2.
Int J Equity Health ; 14: 67, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26286033

RESUMO

BACKGROUND: The inequities in healthcare services between regions, urban and rural, age groups and diverse income groups have been growing rapidly in China. Equal access to basic medical and healthcare services has been recognized as "a basic right of the people" by Chinese government. Spatial accessibility to healthcare facilities has received huge attention in Chinese case studies but been less studied particularly at a county level due to limited availability of high-resolution spatial data. This study is focused on measuring spatial accessibility to healthcare facilities in Deqing County. The spatial inequity between the urban (town) and rural is assessed and three scenarios are designed and built to examine which scenario is instrumental for better reducing the spatial inequity. METHODS: This study utilizes highway network data, Digital Elevation Model (DEM), location of hospitals and clinics, 2010 census data at the finest level - village committee, residential building footprint and building height. Areal weighting method is used to disaggregate population data from village committee level to residential building cell level. Least cost path analysis is applied to calculate the travel time from each building cell to its closest healthcare facility. Then an integral accessibility will be calculated through weighting the travel time to the closest facility between three levels. The spatial inequity in healthcare accessibility between the town and rural areas is examined based on the coverages of areas and populations. The same method is used to compare three scenarios aimed at reducing such spatial inequity - relocation of hospitals, updates of weighting values, and the combination of both. RESULTS: 50.03% of residents can reach a county hospital within 15 min by driving, 95.77% and 100% within 30 and 60 min respectively. 55.14% of residents can reach a town hospital within 5 min, 98.04% and 100% within 15 and 30 min respectively. 57.86% of residential building areas can reach a village clinic within 5 min, 92.65% and 99.22% within 10 and 15 min. After weighting the travel time between the three-level facilities, 30.87% of residents can reach a facility within 5 min, 80.46%% and 99.88% within 15 and 30 min respectively. CONCLUSIONS: The healthcare accessibility pattern of Deqing County has exhibited spatial inequity between the town and rural areas, with the best accessibility in the capital of the county and poorest in the West of the county. There is a high negative correlation between population ageing and healthcare accessibility. Allocation of more advanced medical and healthcare equipment and highly skillful doctors and nurses to village clinics will be an efficient means of reducing the spatial inequity and further consolidating the national medical security system. GIS (Geographical Information Systems) methods have proven successful method of providing quantitative evidence for policy analysis although the data sets and methods could be further improved.


Assuntos
Acessibilidade aos Serviços de Saúde , Área de Atuação Profissional , Características de Residência , China , Humanos , População Rural
3.
Huan Jing Ke Xue ; 43(1): 247-255, 2022 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-34989509

RESUMO

Macrobenthos can reflect the cumulative effect of various ecological threats on the water environment and are closely related to the health of river ecosystems. In this study, taking the North Canal River basin, a typical basin in Beijing, as an example, ecological data from 34 stations were investigated in the summer of 2015. Characteristics of the macrobenthos communities were analyzed, and driving environmental factors were identified using typical correspondence analysis. Thresholds and response species of those driving environmental factors were conducted using the thresholds indicator taxa analysis (TITAN). In this study, the health status of the river ecosystem was evaluated by the multi-metrics method and benthic index of biotic integrity (B-IBI). The benthic community was dominated by pollution-tolerant aquatic insects and mollusks, with a low-level Shannon-wiener diversity index between 0-1.01; fluoride, biochemical oxygen demand, ammonia-nitrogen, and total phosphorus were driving environmental factors influencing the community structure of macrobenthos. Indicator species of ammonia-nitrogen were identified by the TITAN in the North Canal River basin with a threshold range of 1.09-6.94 mg·L-1; three indicator species of total phosphorus were identified with a threshold range of 0.48-1.27 mg·L-1, which were all positive response species. According to the health assessment, the river ecosystem in the North Canal River basin was generally unhealthy, and the upstream ecosystem was better than that downstream; the health conditions in the mountainous areas of Changping district were the best, whereas those in Chaoyang and central city districts were the worst. This study can provide a basis for ecological restoration and pollution control of rivers and also provide a reference for the water ecological civilization construction in other cities.


Assuntos
Ecossistema , Água , Pequim , China , Monitoramento Ambiental , Rios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA