RESUMO
RNA binding proteins (RBPs) often engage multiple RNA binding domains (RBDs) to increase target specificity and affinity. However, the complexity of target recognition of multiple RBDs remains largely unexplored. Here we use Upstream of N-Ras (Unr), a multidomain RBP, to demonstrate how multiple RBDs orchestrate target specificity. A crystal structure of the three C-terminal RNA binding cold-shock domains (CSD) of Unr bound to a poly(A) sequence exemplifies how recognition goes beyond the classical ππ-stacking in CSDs. Further structural studies reveal several interaction surfaces between the N-terminal and C-terminal part of Unr with the poly(A)-binding protein (pAbp). All interactions are validated by mutational analyses and the high-resolution structures presented here will guide further studies to understand how both proteins act together in cellular processes.
Assuntos
Proteínas de Ligação a Poli(A) , RNA , Resposta ao Choque Frio , Proteínas de Ligação a DNA/genética , Poli A/metabolismo , Proteínas de Ligação a Poli(A)/metabolismo , Ligação Proteica , RNA/químicaRESUMO
Proton translocation through lipid membranes is a fundamental process in the field of biology. Several theoretical models have been developed and presented over the years to explain the phenomenon, yet the exact mechanism is still not well understood. Here, we show that proton translocation is directly related to membrane potential fluctuations. Using high-throughput wide-field second harmonic (SH) microscopy, we report apparently universal transmembrane potential fluctuations in lipid membrane systems. Molecular simulations and free energy calculations suggest that H+ permeation proceeds predominantly across a thin, membrane-spanning water needle and that the transient transmembrane potential drives H+ ions across the water needle. This mechanism differs from the transport of other cations that require completely open pores for transport and follows naturally from the well-known Grotthuss mechanism for proton transport in bulk water. Furthermore, SH imaging and conductivity measurements reveal that the rate of proton transport depends on the structure of the hydrophobic core of bilayer membranes.
Assuntos
Bicamadas Lipídicas , Prótons , Água , Água/química , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Simulação de Dinâmica MolecularRESUMO
The formation of pores over lipid membranes by the application of electric fields, termed membrane electroporation, is widely used in biotechnology and medicine to deliver drugs, vaccines, or genes into living cells. Continuum models for describing the free energy landscape of membrane electroporation were proposed decades ago, but they have never been tested against spatially detailed atomistic models. Using molecular dynamics (MD) simulations with a recently proposed reaction coordinate, we computed potentials of mean force of pore nucleation and pore expansion in lipid membranes at various transmembrane potentials. Whereas the free energies of pore expansion are compatible with previous continuum models, the experimentally important free energy barrier of pore nucleation is at variance with established models. The discrepancy originates from different geometries of the transition state; previous continuum models assumed the presence of a membrane-spanning defect throughout the process, whereas, according to the MD simulations, the transition state of pore nucleation is typically passed before a transmembrane defect has formed. A modified continuum model is presented that qualitatively agrees with the MD simulations. Using kinetics of pore opening together with transition state theory, our free energies of pore nucleation are in excellent agreement with previous experimental data.
Assuntos
Eletroporação , Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Membranas , Potenciais da MembranaRESUMO
The Src-homology-2 domain-containing phosphatase SHP2 is a critical regulator of signal transduction, being implicated in cell growth and differentiation. Activating mutations cause developmental disorders and act as oncogenic drivers in hematologic cancers. SHP2 is activated by phosphopeptide binding to the N-SH2 domain, triggering the release of N-SH2 from the catalytic PTP domain. Based on early crystallographic data, it has been widely accepted that opening of the binding cleft of N-SH2 serves as the key "allosteric switch" driving SHP2 activation. To test the putative coupling between binding cleft opening and SHP2 activation as assumed by the allosteric switch model, we critically reviewed structural data of SHP2, and we used extensive molecular dynamics (MD) simulation and free energy calculations of isolated N-SH2 in solution, SHP2 in solution, and SHP2 in a crystal environment. Our results demonstrate that the binding cleft in N-SH2 is constitutively flexible and open in solution and that a closed cleft found in certain structures is a consequence of crystal contacts. The degree of opening of the binding cleft has only a negligible effect on the free energy of SHP2 activation. Instead, SHP2 activation is greatly favored by the opening of the central ß-sheet of N-SH2. We conclude that opening of the N-SH2 binding cleft is not the key allosteric switch triggering SHP2 activation.
Assuntos
Regulação Alostérica , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Domínio Catalítico , Simulação de Dinâmica MolecularRESUMO
In biology, release of Ca2+ ions in the cytosol is essential to trigger or control many cell functions. Calcium signaling acutely depends on lipid membrane permeability to Ca2+. For proper understanding of membrane permeability to Ca2+, both membrane hydration and the structure of the hydrophobic core must be taken into account. Here, we vary the hydrophobic core of bilayer membranes and observe different types of behavior in high-throughput wide-field second harmonic imaging. Ca2+ translocation is observed through mono-unsaturated (DOPC:DOPA) membranes, reduced upon the addition of cholesterol, and completely inhibited for branched (DPhPC:DPhPA) and poly-unsaturated (SLPC:SLPA) lipid membranes. We propose, using molecular dynamics simulations, that ion transport occurs through ion-induced transient pores, which requires nonequilibrium membrane restructuring. This results in different rates at different locations and suggests that the hydrophobic structure of lipids plays a much more sophisticated regulating role than previously thought.
Assuntos
Bicamadas Lipídicas , Microscopia de Geração do Segundo Harmônico , Bicamadas Lipídicas/química , Microscopia , Íons , Colesterol/química , Simulação de Dinâmica MolecularRESUMO
Resolving the structural dynamics of bond breaking, bond formation, and solvation is required for a deeper understanding of solution-phase chemical reactions. In this work, we investigate the photodissociation of triiodide in four solvents using femtosecond time-resolved X-ray solution scattering following 400 nm photoexcitation. Structural analysis of the scattering data resolves the solvent-dependent structural evolution during the bond cleavage, internal rearrangements, solvent-cage escape, and bond reformation in real time. The nature and structure of the reaction intermediates during the recombination are determined, elucidating the full mechanism of photodissociation and recombination on ultrafast time scales. We resolve the structure of the precursor state for recombination as a geminate pair. Further, we determine the size of the solvent cages from the refined structures of the radical pair. The observed structural dynamics present a comprehensive picture of the solvent influence on structure and dynamics of dissociation reactions.
RESUMO
DEAH-box helicases use the energy from ATP hydrolysis to translocate along RNA strands. They are composed of tandem RecA-like domains and a C-terminal domain connected by flexible linkers, and the activity of several DEAH-box helicases is regulated by cofactors called G-patch proteins. We used all-atom molecular dynamics simulations of the helicases Prp43, Prp22, and DHX15 in various liganded states to investigate how RNA, ADP, ATP, or G-patch proteins influence their conformational dynamics. The simulations suggest that apo helicases are highly flexible, whereas binding of RNA renders the helicases more rigid. ATP and ADP control the stability of the RecA1-RecA2 interface, but they have only a smaller effect on domain flexibility in absence of a RecA1-RecA2 interface. Binding of a G-patch protein to DHX15 imposes a more structured conformational ensemble, characterized by more defined relative domain arrangements and by an increased conformational stability of the RNA tunnel. However, the effect of the G-patch protein on domain dynamics is far more subtle as compared to the effects of RNA or ATP/ADP. The simulations characterize DEAH-box helicase as dynamic machines whose conformational ensembles are strongly defined by the presence of RNA, ATP, or ADP and only fine-tuned by the presence of G-patch proteins.
Assuntos
RNA Helicases DEAD-box , RNA , RNA/metabolismo , RNA Helicases DEAD-box/metabolismo , Ligantes , Conformação Molecular , Proteínas de Ligação ao GTP/metabolismo , Trifosfato de Adenosina/metabolismoRESUMO
X-ray free-electron lasers (XFELs) produce x-ray pulses with high brilliance and short pulse duration. These properties enable structural investigations of biomolecular nanocrystals, and they allow one to resolve the dynamics of biomolecules down to the femtosecond timescale. Liquid jets are widely used to deliver samples into the XFEL beam. The impact of the x-ray pulse leads to vaporization and explosion of the liquid jet, while the expanding gas triggers the formation of shock wave trains traveling along the jet, which may affect biomolecular samples before they have been probed. Here, we used molecular dynamics simulations to reveal the structural dynamics of shock waves after an x-ray impact. Analysis of the density and temperature in the jet revealed shock waves that form close to the explosion center, travel along the jet with supersonic velocities, and decay exponentially with an attenuation length proportional to the jet diameter. A trailing shock wave formed after the first shock wave, similar to the shock wave trains in experiments. High shock wave velocities in our simulations are compatible with the phenomenon of "fast sound," as emerging at large sound frequencies. Although using purely classical models in the simulations, the resulting explosion geometry and shock wave dynamics closely resemble experimental findings, and they highlight the importance of atomistic details for modeling shock wave attenuation.
RESUMO
One of the most important properties of membranes is their permeability to water and other small molecules. A targeted change in permeability allows the passage of molecules to be controlled. Vesicles made of membranes with low water permeability are preferable for drug delivery, for example, because they are more stable and maintain the drug concentration inside. This study reports on the very low water permeability of pure protein membranes composed of a bilayer of the amphiphilic protein hydrophobin HFBI. Using a droplet interface bilayer setup, we demonstrate that HFBI bilayers are essentially impermeable to water. HFBI bilayers withstand far larger osmotic pressures than lipid membranes. Only by disturbing the packing of the proteins in the HFBI bilayer is a measurable water permeability induced. To investigate possible molecular mechanisms causing the near-zero permeability, we used all-atom molecular dynamics simulations of various HFBI bilayer models. The simulations suggest that the experimental HFBI bilayer permeability is compatible neither with a lateral honeycomb structure, as found for HFBI monolayers, nor with a residual oil layer within the bilayer or with a disordered lateral packing similar to the packing in lipid bilayers. These results suggest that the low permeabilities of HFBI and lipid bilayers rely on different mechanisms. With their extremely low but adaptable permeability and high stability, HFBI membranes could be used as an osmotic pressure-insensitive barrier in situations where lipid membranes fail such as desalination membranes.
RESUMO
The emergence of multidrug-resistant pathogens led to a critical need for new antibiotics. A key property of effective antibiotics against Gram-negative bacteria is their ability to permeate through the bacterial outer membrane via transmembrane porin proteins. Molecular dynamics (MD) simulations are, in principle, capable of modeling antibiotic permeation across outer membrane porins (OMPs). However, owing to sampling problems, it has remained challenging to obtain converged potentials of mean force (PMFs) for antibiotic permeation across OMPs. Here, we investigated the convergence of PMFs along a single collective variable aimed at quantifying the permeation of the antibiotic fosmidomycin across the OprO porin. We compared standard umbrella sampling (US) with three advanced flavors of the US technique: (i) Hamiltonian replica exchange with solute tempering in combination with US, (ii) simulated tempering-enhanced US, and (iii) replica-exchange US. To quantify the PMF convergence and to reveal hysteresis problems, we computed several independent sets of US simulations starting from pulling simulations in the outward and inward permeation directions. We find that replica-exchange US in combination with well-chosen restraints is highly successful for obtaining converged PMFs of fosmidomycin permeation through OprO, reaching PMFs converged to subkilocalorie per mole accuracy.
Assuntos
Antibacterianos , Fosfomicina , Antibacterianos/metabolismo , Porinas/metabolismo , Simulação de Dinâmica MolecularRESUMO
A key regulatory process during Drosophila development is the localized suppression of the hunchback mRNA translation at the posterior, which gives rise to a hunchback gradient governing the formation of the anterior-posterior body axis. This suppression is achieved by a concerted action of Brain Tumour (Brat), Pumilio (Pum) and Nanos. Each protein is necessary for proper Drosophila development. The RNA contacts have been elucidated for the proteins individually in several atomic-resolution structures. However, the interplay of all three proteins during RNA suppression remains a long-standing open question. Here, we characterize the quaternary complex of the RNA-binding domains of Brat, Pum and Nanos with hunchback mRNA by combining NMR spectroscopy, SANS/SAXS, XL/MS with MD simulations and ITC assays. The quaternary hunchback mRNA suppression complex comprising the RNA binding domains is flexible with unoccupied nucleotides functioning as a flexible linker between the Brat and Pum-Nanos moieties of the complex. Moreover, the presence of the Pum-HD/Nanos-ZnF complex has no effect on the equilibrium RNA binding affinity of the Brat RNA binding domain. This is in accordance with previous studies, which showed that Brat can suppress mRNA independently and is distributed uniformly throughout the embryo.
Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Desenvolvimento Embrionário/genética , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/genética , Animais , Padronização Corporal/genética , Proteínas de Ligação a DNA/ultraestrutura , Proteínas de Drosophila/ultraestrutura , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Complexos Multiproteicos/genética , Complexos Multiproteicos/ultraestrutura , Ressonância Magnética Nuclear Biomolecular , Estrutura Quaternária de Proteína , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas com Motivo de Reconhecimento de RNA/ultraestrutura , Proteínas de Ligação a RNA/ultraestrutura , Espalhamento a Baixo Ângulo , Fatores de Transcrição/ultraestrutura , Difração de Raios XRESUMO
RNA polymerase II (RNAP II) synthesizes RNA by reading the DNA code. During transcription initiation, RNAP II opens the double-stranded DNA to expose the DNA template to the active site. The molecular interactions driving and controlling DNA opening are not well understood. We used all-atom steered molecular dynamics simulations to derive a continuous pathway of DNA opening in human RNAP II, involving a 55 Å DNA strand displacement and a nearly 360° DNA helix rotation. To drive such large-scale transitions, we used a combination of RMSD-based collective variables, a newly designed rotational coordinate, and a path collective variable. The simulations reveal extensive interactions of the DNA with three conserved protein loops near the active site, namely with the rudder, fork loop 1, and fork loop 2. According to the simulations, DNA-protein interactions support DNA opening by a twofold mechanism; they catalyze DNA opening by attacking Watson-Crick hydrogen bonds, and they stabilize the open DNA bubble by the formation of a wide set of DNA-protein salt bridges.
Assuntos
RNA Polimerases Dirigidas por DNA , RNA Polimerase II , Humanos , DNA/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , Transcrição GênicaRESUMO
Unassisted ion transport through lipid membranes plays a crucial role in many cell functions without which life would not be possible, yet the precise mechanism behind the process remains unknown due to its molecular complexity. Here, we demonstrate a direct link between membrane potential fluctuations and divalent ion transport. High-throughput wide-field non-resonant second harmonic (SH) microscopy of membrane water shows that membrane potential fluctuations are universally found in lipid bilayer systems. Molecular dynamics simulations reveal that such variations in membrane potential reduce the free energy cost of transient pore formation and increase the ion flux across an open pore. These transient pores can act as conduits for ion transport, which we SH image for a series of divalent cations (Cu2+, Ca2+, Ba2+, Mg2+) passing through giant unilamellar vesicle (GUV) membranes. Combining the experimental and computational results, we show that permeation through pores formed via an ion-induced electrostatic field is a viable mechanism for unassisted ion transport.
Assuntos
Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Bicamadas Lipídicas/metabolismo , Transporte de Íons , Potenciais da Membrana , CátionsRESUMO
Lipid droplets (LDs) are ubiquitous, cytoplasmic fat storage organelles that originate from the endoplasmic reticulum (ER) membrane. They are composed of a core of neutral lipids surrounded by a phospholipid monolayer. Proteins embedded into this monolayer membrane adopt a monotopic topology and are crucial for regulated lipid storage and consumption. A key question is, which collective properties of protein-intrinsic and lipid-mediated features determine spatio-temporal protein partitioning between phospholipid bilayer and LD monolayer membranes. To address this question, a freestanding phospholipid bilayer with physiological lipidic composition is produced using microfluidics and micrometer-sized LDs are dispersed around the bilayer that spontaneously insert into the bilayer. Using confocal microscopy, the 3D geometry of the reconstituted LDs is determined with high spatial resolution. The micrometer-sized bilayer-embedded LDs present a characteristic lens shape that obeys predictions from equilibrium wetting theory. Fluorescence recovery after photobleaching measurements reveals the existence of a phospholipid diffusion barrier at the monolayer-bilayer interface. Coarse-grained molecular dynamics simulation reveals lipid specific density distributions along the pore rim, which may rationalize the diffusion barrier. The lipid diffusion barrier between the LD covering monolayer and the bilayer may be a key phenomenon influencing protein partitioning between the ER membrane and LDs in living cells.
Assuntos
Gotículas Lipídicas , Fosfolipídeos , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Gotículas Lipídicas/metabolismo , Simulação de Dinâmica Molecular , Fosfolipídeos/metabolismoRESUMO
Arginine (R)-rich peptides constitute the most relevant class of cell-penetrating peptides and other membrane-active peptides that can translocate across the cell membrane or generate defects in lipid bilayers such as water-filled pores. The mode of action of R-rich peptides remains a topic of controversy, mainly because a quantitative and energetic understanding of arginine effects on membrane stability is lacking. Here, we explore the ability of several oligo-arginines R[Formula: see text] and of an arginine side chain mimic R[Formula: see text] to induce pore formation in lipid bilayers employing MD simulations, free-energy calculations, breakthrough force spectroscopy and leakage assays. Our experiments reveal that R[Formula: see text] but not R[Formula: see text] reduces the line tension of a membrane with anionic lipids. While R[Formula: see text] peptides form a layer on top of a partly negatively charged lipid bilayer, R[Formula: see text] leads to its disintegration. Complementary, our simulations show R[Formula: see text] causes membrane thinning and area per lipid increase beside lowering the pore nucleation free energy. Model polyarginine R[Formula: see text] similarly promoted pore formation in simulations, but without overall bilayer destabilization. We conclude that while the guanidine moiety is intrinsically membrane-disruptive, poly-arginines favor pore formation in negatively charged membranes via a different mechanism. Pore formation by R-rich peptides seems to be counteracted by lipids with PC headgroups. We found that long R[Formula: see text] and R[Formula: see text] but not short R[Formula: see text] reduce the free energy of nucleating a pore. In short R[Formula: see text], the substantial effect of the charged termini prevent their membrane activity, rationalizing why only longer [Formula: see text] are membrane-active.
Assuntos
Arginina/química , Membrana Celular/metabolismo , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , TermodinâmicaRESUMO
Atmospheric aerosols contain organic molecules that serve as cloud condensation nucleation sites and affect the climate. Several experimental and simulation studies have been dedicated to investigate their surface propensity, but the mechanisms that drive them to the water surface are still not fully understood. In this molecular dynamics (MD) simulation study, primary alcohols are considered as a model system representing polar organic molecules. We find that the surface affinity of n-alcohols increases linearly with the length of the hydrophobic tail. By decomposing the adsorption free energy into enthalpy and entropy contributions, we find that the transition from bulk to surface is entropically driven, compatible with the fact that the hydrophobic effect of small solutes is of entropic origin. The enthalpy of surface adsorption is nearly invariant among different n-alcohols because the loss of solvent-alcohol interactions is balanced by a gain in solvent-solvent interactions. Structural analysis shows that, at the surface, the linear alcohols prefer an orientation with the hydrophobic tail pointing out from the surface, whereas the hydroxyl group remains buried in the water. This general behaviour is likely transferable to other small molecules with similar structures but other functional groups that are present in the atmosphere. Therefore, the present study is a step forward toward a general description of organic molecules in aerosols.
RESUMO
Heavy water or deuterium oxide, D2O, is used as a solvent in various biophysical and chemical experiments. To model such experiments with molecular dynamics simulations, effective pair potentials for heavy water are required, which reproduce the well-known physicochemical differences relative to light water. We present three effective pair potentials for heavy water, denoted SPC/E-HW, TIP3P-HW, and TIP4P/2005-HW. The models were parameterized by modifying the widely used three- and four-site models for light water, with the aim of maintaining the specific characteristics of the light water models. At room temperature, SPC/E-HW and TIP3P-HW capture the modulations relative to light water of the mass and electron densities, heat of vaporization, diffusion coefficient, and water structure. TIP4P/2005-HW captures, in addition, the density of heavy water over a wide temperature range.
RESUMO
Resolving the structural dynamics of the initial steps of chemical reactions is challenging. We report the femtosecond time-resolved wide-angle x-ray scattering of the photodissociation of diiodomethane in cyclohexane. The data reveal with structural detail how the molecule dissociates into radicals, how the radicals collide with the solvent, and how they form the photoisomer. We extract how translational and rotational kinetic energy is dispersed into the solvent. We also find that 85% of the primary radical pairs are confined to their original solvent cage and discuss how this influences the downstream recombination reactions.
RESUMO
SH2 domain-containing tyrosine phosphatase 2 (SHP2), encoded by PTPN11, plays a fundamental role in the modulation of several signaling pathways. Germline and somatic mutations in PTPN11 are associated with different rare diseases and hematologic malignancies, and recent studies have individuated SHP2 as a central node in oncogenesis and cancer drug resistance. The SHP2 structure includes two Src homology 2 domains (N-SH2 and C-SH2) followed by a catalytic protein tyrosine phosphatase (PTP) domain. Under basal conditions, the N-SH2 domain blocks the active site, inhibiting phosphatase activity. Association of the N-SH2 domain with binding partners containing short amino acid motifs comprising a phosphotyrosine residue (pY) leads to N-SH2/PTP dissociation and SHP2 activation. Considering the relevance of SHP2 in signaling and disease and the central role of the N-SH2 domain in its allosteric regulation mechanism, we performed microsecond-long molecular dynamics (MD) simulations of the N-SH2 domain complexed to 12 different peptides to define the structural and dynamical features determining the binding affinity and specificity of the domain. Phosphopeptide residues at position -2 to +5, with respect to pY, have significant interactions with the SH2 domain. In addition to the strong interaction of the pY residue with its conserved binding pocket, the complex is stabilized hydrophobically by insertion of residues +1, +3, and +5 in an apolar groove of the domain and interaction of residue -2 with both the pY and a protein surface residue. Additional interactions are provided by hydrogen bonds formed by the backbone of residues -1, +1, +2, and +4. Finally, negatively charged residues at positions +2 and +4 are involved in electrostatic interactions with two lysines (Lys89 and Lys91) specific for the SHP2 N-SH2 domain. Interestingly, the MD simulations illustrated a previously undescribed conformational flexibility of the domain, involving the core ß sheet and the loop that closes the pY binding pocket.
Assuntos
Proteína Tirosina Fosfatase não Receptora Tipo 11 , Domínios de Homologia de src , Humanos , Simulação de Dinâmica Molecular , Fosfopeptídeos/metabolismo , Ligação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Transdução de SinaisRESUMO
The intrinsically disordered p15PAF regulates DNA replication and repair when interacting with the Proliferating Cell Nuclear Antigen (PCNA) sliding clamp. As many interactions between disordered proteins and globular partners involved in signaling and regulation, the complex between p15PAF and trimeric PCNA is of low affinity, forming a transient complex that is difficult to characterize at a structural level due to its inherent polydispersity. We have determined the structure, conformational fluctuations, and relative population of the five species that coexist in solution by combining small-angle X-ray scattering (SAXS) with molecular modelling. By using explicit ensemble descriptions for the individual species, built using integrative approaches and molecular dynamics (MD) simulations, we collectively interpreted multiple SAXS profiles as population-weighted thermodynamic mixtures. The analysis demonstrates that the N-terminus of p15PAF penetrates the PCNA ring and emerges on the back face. This observation substantiates the role of p15PAF as a drag regulating PCNA processivity during DNA repair. Our study reveals the power of ensemble-based approaches to decode structural, dynamic, and thermodynamic information from SAXS data. This strategy paves the way for deciphering the structural bases of flexible, transient and multivalent macromolecular assemblies involved in pivotal biological processes.