Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Bioorg Med Chem Lett ; 89: 129310, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37137430

RESUMO

MitoNEET belongs to the CDGSH Iron-Sulfur Domain (CISD)-gene family of proteins and is a [2Fe-2S] cluster-containing protein found on the outer membrane of mitochondria. The specific functions of mitoNEET/CISD1 remain to be fully elucidated, but the protein is involved in regulating mitochondrial bioenergetics in several metabolic diseases. Unfortunately, drug discovery efforts targeting mitoNEET to improve metabolic disorders are hampered by the lack of ligand-binding assays for this mitochondrial protein. We have developed a protocol amenable for high-throughput screening (HTS) assay, by modifying an ATP fluorescence polarization method to facilitate drug discovery targeting mitoNEET. Based on our observation that adenosine triphosphate (ATP) interacts with mitoNEET, ATP-fluorescein was used during assay development. We established a novel binding assay suitable for both 96- or 384-well plate formats with tolerance for the presence of 2% v/v dimethyl sulfoxide (DMSO). We determined the IC50-values for a set of benzesulfonamide derivatives and found the novel assay reliably ranked the binding-affinities of compounds compared to radioactive binding assay with human recombinant mitoNEET. The developed assay platform is crucial in identifying novel chemical probes for metabolic diseases. It will accelerate drug discovery targeting mitoNEET and potentially other members of the CISD gene family.


Assuntos
Proteínas Ferro-Enxofre , Humanos , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Fluorescência , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Trifosfato de Adenosina/metabolismo , Ferro/metabolismo , Enxofre , Ligação Proteica
2.
Pharm Res ; 38(5): 803-817, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33982226

RESUMO

PURPOSE: Therapeutic strategies to treat ischemic stroke are limited due to the heterogeneity of cerebral ischemic injury and the mechanisms that contribute to the cell death. Since oxidative stress is one of the primary mechanisms that cause brain injury post-stroke, we hypothesized that therapeutic targets that modulate mitochondrial function could protect against reperfusion-injury after cerebral ischemia, with the focus here on a mitochondrial protein, mitoNEET, that modulates cellular bioenergetics. METHOD: In this study, we evaluated the pharmacology of the mitoNEET ligand NL-1 in an in vivo therapeutic role for NL-1 in a C57Bl/6 murine model of ischemic stroke. RESULTS: NL-1 decreased hydrogen peroxide production with an IC50 of 5.95 µM in neuronal cells (N2A). The in vivo activity of NL-1 was evaluated in a murine 1 h transient middle cerebral artery occlusion (t-MCAO) model of ischemic stroke. We found that mice treated with NL-1 (10 mg/kg, i.p.) at time of reperfusion and allowed to recover for 24 h showed a 43% reduction in infarct volume and 68% reduction in edema compared to sham-injured mice. Additionally, we found that when NL-1 was administered 15 min post-t-MCAO, the ischemia volume was reduced by 41%, and stroke-associated edema by 63%. CONCLUSION: As support of our hypothesis, as expected, NL-1 failed to reduce stroke infarct in a permanent photothrombotic occlusion model of stroke. This report demonstrates the potential therapeutic benefits of using mitoNEET ligands like NL-1 as novel mitoceuticals for treating reperfusion-injury with cerebral stroke.


Assuntos
Moléculas de Adesão Celular Neuronais/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Ataque Isquêmico Transitório/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Animais , Moléculas de Adesão Celular Neuronais/uso terapêutico , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Humanos , Injeções Intraperitoneais , Proteínas de Ligação ao Ferro/metabolismo , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos
3.
Brain Inj ; 31(1): 98-105, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27880054

RESUMO

BACKGROUND: In total, 3.8 million concussions occur each year in the US leading to acute functional deficits, but the underlying histopathologic changes that occur are relatively unknown. In order to improve understanding of acute injury mechanisms, appropriately designed pre-clinical models must be utilized. METHODS: The clinical relevance of compression wave injury models revolves around the ability to produce consistent histopathologic deficits. Mild traumatic brain injuries activate similar neuroinflammatory cascades, cell death markers and increases in amyloid precursor protein in both humans and rodents. Humans, however, infrequently succumb to mild traumatic brain injuries and, therefore, the intensity and magnitude of impacts must be inferred. Understanding compression wave properties and mechanical loading could help link the histopathologic deficits seen in rodents to what might be happening in human brains following concussions. RESULTS: While the concept of linking duration and intensity of impact to subsequent histopathologic deficits makes sense, numerical modelling of compression waves has not been performed in this context. In this interdisciplinary work, numerical simulations were performed to study the creation of compression waves in an experimental model. CONCLUSION: This work was conducted in conjunction with a repetitive compression wave injury paradigm in rats in order to better understand how the wave generation correlates with histopathologic deficits.


Assuntos
Concussão Encefálica/etiologia , Encéfalo/fisiopatologia , Modelos Animais , Modelos Teóricos , Animais , Encéfalo/patologia , Concussão Encefálica/patologia , Concussão Encefálica/fisiopatologia , Simulação por Computador , Ratos
4.
Int J Mol Sci ; 17(4): 497, 2016 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-27049383

RESUMO

Aneurysmal subarachnoid hemorrhage (SAH) can lead to devastating outcomes including vasospasm, cognitive decline, and even death. Currently, treatment options are limited for this potentially life threatening injury. Recent evidence suggests that neuroinflammation plays a critical role in injury expansion and brain damage. Red blood cell breakdown products can lead to the release of inflammatory cytokines that trigger vasospasm and tissue injury. Preclinical models have been used successfully to improve understanding about neuroinflammation following aneurysmal rupture. The focus of this review is to provide an overview of how neuroinflammation relates to secondary outcomes such as vasospasm after aneurysmal rupture and to critically discuss pharmaceutical agents that warrant further investigation for the treatment of subarachnoid hemorrhage. We provide a concise overview of the neuroinflammatory pathways that are upregulated following aneurysmal rupture and how these pathways correlate to long-term outcomes. Treatment of aneurysm rupture is limited and few pharmaceutical drugs are available. Through improved understanding of biochemical mechanisms of injury, novel treatment solutions are being developed that target neuroinflammation. In the final sections of this review, we highlight a few of these novel treatment approaches and emphasize why targeting neuroinflammation following aneurysmal subarachnoid hemorrhage may improve patient care. We encourage ongoing research into the pathophysiology of aneurysmal subarachnoid hemorrhage, especially in regards to neuroinflammatory cascades and the translation to randomized clinical trials.


Assuntos
Encéfalo/patologia , Inflamação/complicações , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/patologia , Animais , Encéfalo/irrigação sanguínea , Encéfalo/imunologia , Citocinas/análise , Citocinas/imunologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Peptídeo Hidrolases/análise , Peptídeo Hidrolases/imunologia , Hemorragia Subaracnóidea/imunologia , Hemorragia Subaracnóidea/terapia , Vasoconstrição
5.
J Neurosci ; 34(24): 8259-67, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24920629

RESUMO

Ischemic stroke is one of the leading causes of morbidity and mortality. Treatment options are limited and only a minority of patients receive acute interventions. Understanding the mechanisms that mediate neuronal injury and death may identify targets for neuroprotective treatments. Here we show that the aberrant activity of the protein kinase Cdk5 is a principal cause of neuronal death in rodents during stroke. Ischemia induced either by embolic middle cerebral artery occlusion (MCAO) in vivo or by oxygen and glucose deprivation in brain slices caused calpain-dependent conversion of the Cdk5-activating cofactor p35 to p25. Inhibition of aberrant Cdk5 during ischemia protected dopamine neurotransmission, maintained field potentials, and blocked excitotoxicity. Furthermore, pharmacological inhibition or conditional knock-out (CKO) of Cdk5 prevented neuronal death in response to ischemia. Moreover, Cdk5 CKO dramatically reduced infarctions following MCAO. Thus, targeting aberrant Cdk5 activity may serve as an effective treatment for stroke.


Assuntos
Quinase 5 Dependente de Ciclina/metabolismo , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/metabolismo , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/prevenção & controle , Animais , Calpaína/farmacologia , Morte Celular/genética , Morte Celular/fisiologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/patologia , Quinase 5 Dependente de Ciclina/genética , Modelos Animais de Doenças , Estrogênios/metabolismo , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Hipóxia/fisiopatologia , Técnicas In Vitro , Infarto da Artéria Cerebral Média/terapia , Masculino , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/fisiologia , Fosfotransferases , Ratos , Ratos Sprague-Dawley , Sais de Tetrazólio , Fatores de Tempo , Ativador de Plasminogênio Tecidual/uso terapêutico
6.
Stroke ; 44(12): 3490-7, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24172582

RESUMO

BACKGROUND AND PURPOSE: Bryostatin, a potent protein kinase C (PKC) activator, has demonstrated therapeutic efficacy in preclinical models of associative memory, Alzheimer disease, global ischemia, and traumatic brain injury. In this study, we tested the hypothesis that administration of bryostatin provides a therapeutic benefit in reducing brain injury and improving stroke outcome using a clinically relevant model of cerebral ischemia with tissue plasminogen activator reperfusion in aged rats. METHODS: Acute cerebral ischemia was produced by reversible occlusion of the right middle cerebral artery (MCAO) in 18- to 20-month-old female Sprague-Dawley rats using an autologous blood clot with tissue plasminogen activator-mediated reperfusion. Bryostatin was administered at 6 hours post-MCAO, then at 3, 6, 9, 12, 15, and 18 days after MCAO. Functional assessment was conducted at 2, 7, 14, and 21 days after MCAO. Lesion volume and hemispheric swelling/atrophy were performed at 2, 7, and 21 days post-MCAO. Histological assessment of PKC isozymes was performed at 24 hours post-MCAO. RESULTS: Bryostatin-treated rats showed improved survival post-MCAO, especially during the first 4 days. Repeated administration of bryostatin post-MCAO resulted in reduced infarct volume, hemispheric swelling/atrophy, and improved neurological function at 21 days post-MCAO. Changes in αPKC expression and εPKC expression in neurons were noted in bryostatin-treated rats at 24 hours post-MCAO. CONCLUSIONS: Repeated bryostatin administration post-MCAO protected the brain from severe neurological injury post-MCAO. Bryostatin treatment improved survival rate, reduced lesion volume, salvaged tissue in infarcted hemisphere by reducing necrosis and peri-infarct astrogliosis, and improved functional outcome after MCAO.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Briostatinas/uso terapêutico , Proteína Quinase C/antagonistas & inibidores , Inibidores de Proteínas Quinases/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Encéfalo/patologia , Isquemia Encefálica/patologia , Briostatinas/farmacologia , Modelos Animais de Doenças , Feminino , Gliose/tratamento farmacológico , Gliose/patologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/patologia , Taxa de Sobrevida
7.
Int J Mol Sci ; 14(1): 1890-917, 2013 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-23344061

RESUMO

The translation of neuroprotective agents for ischemic stroke from bench-to-bedside has largely failed to produce improved treatments since the development of tissue plasminogen activator (tPA). One possible reason for lack of translation is the failure to acknowledge the greatest risk factor for stroke, age, and other common comorbidities such as hypertension, obesity, and diabetes that are associated with stroke. In this review, we highlight both mechanisms of studying these factors and results of those that have been addressed. We also discuss the potential role of other lifestyle factors associated with an increased stroke risk such as sleep fragmentation and/or deprivation. Furthermore, many proposed therapeutic agents have targeted molecular mechanisms occurring soon after the onset of ischemia despite data indicating delayed patient presentation following ischemic stroke. Modulating inflammation has been identified as a promising therapeutic avenue consistent with preliminary success of ongoing clinical trials for anti-inflammatory compounds such as minocycline. We review the role of inflammation in stroke and in particular, the role of inflammatory cell recruitment and macrophage phenotype in the inflammatory process. Emerging evidence indicates an increasing role of neuro-immune crosstalk, which has led to increased interest in identification of peripheral biomarkers indicative of neural injury. It is our hope that identification and investigation of factors influencing stroke pathophysiology may lead to improved therapeutics.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Fatores Etários , Animais , Isquemia Encefálica/etiologia , Ensaios Clínicos como Assunto , Complicações do Diabetes/tratamento farmacológico , Humanos , Hipertensão/complicações , Hipertensão/tratamento farmacológico , Obesidade/complicações , Obesidade/tratamento farmacológico , Fatores de Risco , Acidente Vascular Cerebral/etiologia
8.
Am J Pathol ; 178(6): 2450-60, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21641373

RESUMO

In 2000, approximately 10 million women were receiving hormone replacement therapy (HRT) for alleviation of menopausal symptoms. A number of prior animal studies suggested that HRT may be neuroprotective and cardioprotective. Then, in 2003, reports from the Women's Health Initiative (WHI) indicated that long-term estrogen/progestin supplementation led to increased incidence of stroke. A second branch of the WHI in women with prior hysterectomy found an even stronger correlation between estrogen supplementation alone and stroke incidence. Follow-up analyses of the data, as well as data from other smaller clinical trials, have also demonstrated increased stroke severity in women receiving HRT or estrogen alone. This review examines the studies indicating that estrogen is neuroprotectant in animal models and explores potential reasons why this may not be true in postmenopausal women. Specifically, age-related differences in estrogen receptors and estrogenic actions in the brain are discussed, with the conclusion that animal models of disease must closely mimic human disease to produce clinically relevant results.


Assuntos
Envelhecimento/efeitos dos fármacos , Estrogênios/farmacologia , Sistema Nervoso/efeitos dos fármacos , Sistema Nervoso/patologia , Animais , Encéfalo/irrigação sanguínea , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Humanos , Inflamação/patologia , Receptores de Estrogênio/metabolismo
9.
Yale J Biol Med ; 85(4): 523-39, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23239952

RESUMO

Ischemic stroke represents a leading cause of morbidity and mortality in the developed world. This disabling and sometimes fatal event puts an ever increasing burden on the family members and medical professionals who care for stroke victims. Preclinical ischemic stroke research has predominantly utilized young adult, healthy animals, a clear discrepancy when considering the clinical population affected by stroke. A broad spectrum of risk factors such as age, obesity, diabetes, and hypertension has been associated with an increased stroke risk. The effect of these comorbidities on both stroke pathophysiology and outcome has not been emphasized and has been recognized as a shortcoming of preclinical studies. By addressing these conditions in experimental models of ischemic stroke, it may be possible to more accurately represent the clinical scenario and improve therapeutic translation from bench-to-bedside. In this work, we review many of the risk factors associated with increased stroke risk, particularly as each risk factor relates to inflammation. Additionally, we explore potential animal models that could be utilized in identifying the contribution of these risk factors to stroke outcome. By investigating the risk factors for stroke and how these may alter stroke pathophysiology, the present discrepancies between preclinical studies and the clinical reality can be reconciled in an effort to improve therapeutic development and translation from bench-to-bedside.


Assuntos
Fatores Etários , Isquemia Encefálica/etiologia , Síndrome Metabólica/complicações , Acidente Vascular Cerebral/etiologia , Animais , Modelos Animais de Doenças , Humanos , Fatores de Risco
10.
Exp Neurol ; 355: 114128, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35662609

RESUMO

Cerebral ischemic stroke is a leading cause of mortality and disability worldwide. Currently, there are a lack of drugs capable of reducing neuronal cell loss due to ischemia/reperfusion-injury after stroke. Previously, we identified mitoNEET, a [2Fe-2S] redox mitochondrial protein, as a putative drug target for ischemic stroke. In this study, we tested NL-1, a novel mitoNEET ligand, in a preclinical model of ischemic stroke with reperfusion using aged female rats. Using a transient middle cerebral artery occlusion (tMCAO), we induced a 2 h ischemic injury and then evaluated the effects of NL-1 treatment on ischemic/reperfusion brain injury at 24 and 72 h. Test compounds were administered at time of reperfusion via intravenous dosing. Results of the study demonstrated that NL-1 (10 mg/kg) treatment markedly improved survival and reduced infarct volume and hemispheric swelling in the brain as compared aged rats treated with vehicle or a lower dose of NL-1 (0.25 mg/kg). Interestingly, the protective effect of NL-1 was significantly improved when encapsulated in PLGA nanoparticles, where a 40-fold lesser dose (0.25 mg/kg) of NL-1 produced an equivalent effect as the 10 mg/kg dose. Evaluation of changes in blood-brain barrier permeability and lipid peroxidation corroborated the protective actions of NL-1 (10 mg/kg) or NL-1 NP treatment demonstrated a reduced accumulation of parenchymal IgG, decreased levels of 4-hydroxynonenal (4-HNE) and a decreased TUNEL positive cells in the brains of aged female rats at 72 h after tMCAO with reperfusion. Our studies indicate that targeting mitoNEET following ischemia/reperfusion-injury is a novel drug target pathway that warrants further investigation.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Animais , Isquemia Encefálica/tratamento farmacológico , Feminino , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/tratamento farmacológico , Ligantes , Proteínas Mitocondriais , Ratos , Traumatismo por Reperfusão/tratamento farmacológico , Resultado do Tratamento
11.
J Vis Exp ; (165)2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33226021

RESUMO

Traumatic brain injury (TBI) is a large-scale public health problem. Mild TBI is the most prevalent form of neurotrauma and accounts for a large number of medical visits in the United States. There are currently no FDA-approved treatments available for TBI. The increased incidence of military-related, blast-induced TBI further accentuates the urgent need for effective TBI treatments. Therefore, new preclinical TBI animal models that recapitulate aspects of human blast-related TBI will greatly advance the research efforts into the neurobiological and pathophysiological processes underlying mild to moderate TBI as well as the development of novel therapeutic strategies for TBI. Here we present a reliable, reproducible model for the investigation of the molecular, cellular, and behavioral effects of mild to moderate blast-induced TBI. We describe a step-by-step protocol for closed-head, blast-induced mild TBI in rodents using a bench-top setup consisting of a gas-driven shock tube equipped with piezoelectric pressure sensors to ensure consistent test conditions. The benefits of the setup that we have established are its relative low-cost, ease of installation, ease of use and high-throughput capacity. Further advantages of this non-invasive TBI model include the scalability of the blast peak overpressure and the generation of controlled reproducible outcomes. The reproducibility and relevance of this TBI model has been evaluated in a number of downstream applications, including neurobiological, neuropathological, neurophysiological and behavioral analyses, supporting the use of this model for the characterization of processes underlying the etiology of mild to moderate TBI.


Assuntos
Traumatismos por Explosões/patologia , Lesões Encefálicas Traumáticas/patologia , Animais , Comportamento Animal , Modelos Animais de Doenças , Explosões , Humanos , Masculino , Camundongos Endogâmicos C57BL , Pressão , Reprodutibilidade dos Testes
12.
Exp Brain Res ; 197(1): 23-34, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19565232

RESUMO

Uncontrolled or poorly controlled blood glucose during diabetes is an important factor in worsened vascular function. While evidence suggests that hyperglycemia-induced oxidative stress plays a prominent role in development of microangiopathy of the retina, kidney, and nerves, the role oxidative stress plays on blood-brain barrier (BBB) function and structure has lagged behind. In this study, a natural antioxidant, sesamol, was administered to streptozotocin (STZ)-induced diabetic rats to examine the role that oxidative stress plays on BBB structure and function. Experiments were conducted at 56 days after STZ injection. Male Sprague-Dawley rats randomly were divided into four treatment groups CON--control; STZ--STZ-induced diabetes; CON + S--control + sesamol; STZ + S--STZ-induced diabetes + sesamol. Functional and structural changes to the BBB were measured by in situ brain perfusion and western blot analysis of changes in tight junction protein expression. Oxidative stress markers were visualized by fluorescent confocal microscopy and assayed by spectrophotometric analysis. Results demonstrated that the increased BBB permeability observed in STZ-induced diabetic rats was attenuated in STZ + S rats to levels observed in CON. Sesamol treatment reduced the negative impact of STZ-induced diabetes on tight junction protein expression in isolated cerebral microvessels. Oxidative stress markers were elevated in STZ as compared to CON. STZ + S displayed an improved antioxidant capacity which led to a reduced expression of superoxide and peroxynitrite and reduced lipid peroxidation. In conclusion, this study showed that sesamol treatment enhanced antioxidant capacity of the diabetic brain and led to decreased perturbation of hyperglycemia-induced changes in BBB structure and function.


Assuntos
Antioxidantes/farmacologia , Benzodioxóis/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Diabetes Mellitus Experimental/patologia , Fenóis/farmacologia , Análise de Variância , Animais , Glicemia/metabolismo , Barreira Hematoencefálica/fisiopatologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Permeabilidade Capilar/efeitos dos fármacos , Catalase/metabolismo , Claudina-5 , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Modelos Animais de Doenças , Etídio/análogos & derivados , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microscopia Confocal , Estresse Oxidativo/efeitos dos fármacos , Ácido Peroxinitroso/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Espectrofotometria/métodos , Estreptozocina , Proteína da Zônula de Oclusão-1
13.
Mol Brain ; 11(1): 64, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30409147

RESUMO

Direct or indirect exposure to an explosion can induce traumatic brain injury (TBI) of various severity levels. Primary TBI from blast exposure is commonly characterized by internal injuries, such as vascular damage, neuronal injury, and contusion, without external injuries. Current animal models of blast-induced TBI (bTBI) have helped to understand the deleterious effects of moderate to severe blast forces. However, the neurological effects of mild blast forces remain poorly characterized. Here, we investigated the effects caused by mild blast forces combining neuropathological, histological, biochemical and neurophysiological analysis. For this purpose, we employed a rodent blast TBI model with blast forces below the level that causes macroscopic neuropathological changes. We found that mild blast forces induced neuroinflammation in cerebral cortex, striatum and hippocampus. Moreover, mild blast triggered microvascular damage and axonal injury. Furthermore, mild blast caused deficits in hippocampal short-term plasticity and synaptic excitability, but no impairments in long-term potentiation. Finally, mild blast exposure induced proteolytic cleavage of spectrin and the cyclin-dependent kinase 5 activator, p35 in hippocampus. Together, these findings show that mild blast forces can cause aberrant neurological changes that critically impact neuronal functions. These results are consistent with the idea that mild blast forces may induce subclinical pathophysiological changes that may contribute to neurological and psychiatric disorders.


Assuntos
Traumatismos por Explosões/patologia , Traumatismos por Explosões/fisiopatologia , Encéfalo/patologia , Encéfalo/fisiopatologia , Animais , Traumatismos por Explosões/complicações , Encéfalo/irrigação sanguínea , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/fisiopatologia , Gliose/complicações , Gliose/patologia , Gliose/fisiopatologia , Hipocampo/patologia , Hipocampo/fisiopatologia , Inflamação/complicações , Inflamação/patologia , Inflamação/fisiopatologia , Masculino , Microglia/patologia , Microvasos/patologia , Plasticidade Neuronal , Neurônios/patologia , Proteólise , Ratos Sprague-Dawley
14.
J Neurotrauma ; 34(S1): S62-S70, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28077004

RESUMO

Blast traumatic brain injury (bTBI) has been shown to contribute to progressive neurodegenerative disease. Recent evidence suggests that endoplasmic reticulum (ER) stress is a mechanistic link between acute neurotrauma and progressive tauopathy. We propose that ER stress contributes to extensive behavioral changes associated with a chronic traumatic encephalopathy (CTE)-like phenotype. Targeting ER stress is a promising option for the treatment of neurotrauma-related neurodegeneration, which warrants investigation. Utilizing our validated and clinically relevant Sprague-Dawley blast model, we investigated a time course of mechanistic changes that occur following bTBI (50 psi) including: ER stress activation, iron-mediated toxicity, and tauopathy via Western blot and immunohistochemistry. These changes were associated with behavioral alterations measured by the Elevated Plus Maze (EPM), Forced Swim Test (FST), and Morris Water Maze (MWM). Following characterization, salubrinal, an ER stress modulator, was given at a concentration of 1 mg/kg post-blast, and its mechanism of action was determined in vitro. bTBI significantly increased markers of injury in the cortex of the left hemisphere: p-PERK and p-eIF2α at 30 min, p-T205 tau at 6 h, and iron at 24 h. bTBI animals spent more time immobile on the FST at 72 h and more time in the open arm of the EPM at 7 days. Further, bTBI caused a significant learning disruption measured with MWM at 21 days post-blast, with persistent tau changes. Salubrinal successfully reduced ER stress markers in vivo and in vitro while significantly improving performance on the EPM. bTBI causes robust biochemical changes that contribute to neurodegeneration, but these changes may be targeted with ER stress modulators.


Assuntos
Traumatismos por Explosões/fisiopatologia , Lesões Encefálicas Traumáticas/fisiopatologia , Estresse do Retículo Endoplasmático/fisiologia , Animais , Traumatismos por Explosões/complicações , Lesões Encefálicas Traumáticas/etiologia , Encefalopatia Traumática Crônica/etiologia , Encefalopatia Traumática Crônica/fisiopatologia , Cinamatos/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Ratos , Ratos Sprague-Dawley , Tioureia/análogos & derivados , Tioureia/farmacologia
15.
Arch Neurosci ; 4(2)2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28758136

RESUMO

Neuropsychiatric symptom development has become more prevalent with 270,000 blast exposures occurring in the past 10 years in the United States. How blast injury leads to neuropsychiatric symptomology is currently unknown. Preclinical models of blast-induced traumatic brain injury have been used to demonstrate blood-brain barrier disruption, degenerative pathophysiology, and behavioral deficits. Vascular injury is a primary effect of neurotrauma that can trigger secondary injury cascades and neurodegeneration. Here we present data from a novel scaled and clinically relevant mouse blast model that was specifically developed to assess the outcome of vascular injury. We look at the biochemical effects and behavioral changes associated with blast injury in young-adult male BALB/c mice. We report that blast exposure causes focal vascular injury in the Somatosensory Barrel Field cortex, which leads to perivascular astrocyte reactivity, as well as acute aberrant behavior. Biochemical analysis revealed that mild blast exposure also invokes tauopathy, neuroinflammation, and oxidative stress. Overall, we propose our model to be used to evaluate focal blood-brain barrier disruption and to discover novel therapies for human neuropsychiatric symptoms.

16.
Neuroimmunol Neuroinflamm ; 4: 6-15, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28164149

RESUMO

AIM: Over 7 million traumatic brain injuries (TBI) are reported each year in the United States. However, treatments and neuroprotection following TBI are limited because secondary injury cascades are poorly understood. Lipopolysaccharide (LPS) administration before controlled cortical impact can contribute to neuroprotection. However, the underlying mechanisms and whether LPS preconditioning confers neuroprotection against closed-head injuries remains unclear. METHODS: The authors hypothesized that preconditioning with a low dose of LPS (0.2 mg/kg) would regulate glial reactivity and protect against diffuse axonal injury induced by weight drop. LPS was administered 7 days prior to TBI. LPS administration reduced locomotion, which recovered completely by time of injury. RESULTS: LPS preconditioning significantly reduced the post-injury gliosis response near the corpus callosum, possibly by downregulating the oncostatin M receptor. These novel findings demonstrate a protective role of LPS preconditioning against diffuse axonal injury. LPS preconditioning successfully prevented neurodegeneration near the corpus callosum, as measured by fluorojade B. CONCLUSION: Further work is required to elucidate whether LPS preconditioning confers long-term protection against behavioral deficits and to elucidate the biochemical mechanisms responsible for LPS-induced neuroprotective effects.

17.
Front Physiol ; 8: 1124, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29367846

RESUMO

Nitric oxide (NO) is a known anti-adhesive molecule that prevents platelet aggregation and leukocyte adhesion to endothelial cells (ECs). The mechanism has been attributed to its role in the regulation of adhesion molecules on leukocytes and the adhesive properties of platelets. Our previous study conducted in rat venules found that reduction of EC basal NO synthesis caused EC ICAM-1-mediated firm adhesion of leukocytes within 10-30 min. This quick response occurred in the absence of alterations of adhesion molecules on leukocytes and also opposes the classical pattern of ICAM-1-mediated leukocyte adhesion that requires protein synthesis and occurs hours after stimulation. The objective of this study is to investigate the underlying mechanisms of reduced basal NO-induced EC-mediated rapid leukocyte adhesion observed in intact microvessels. The relative levels of ICAM-1 at different cell regions and their activation status were determined with cellular fractionation and western blot using cultured human umbilical vein ECs. ICAM-1 adhesiveness was determined by immunoprecipitation in non-denatured proteins to assess the changes in ICAM-1 binding to its inhibitory antibody, mAb1A29, and antibody against total ICAM-1 with and without NO reduction. The adhesion strength of EC ICAM-1 was assessed by atomic force microscopy (AFM) on live cells. Results showed that reduction of EC basal NO caused by the application of caveolin-1 scaffolding domain (AP-CAV) or NOS inhibitor, L-NMMA, for 30 min significantly increased phosphorylated ICAM-1 and its binding to mAb1A29 in the absence of altered ICAM-1 expression and its distribution at subcellular regions. The Src inhibitor, PP1, inhibited NO reduction-induced increases in ICAM-1 phosphorylation and adhesive binding. AFM detected significant increases in the binding force between AP-CAV-treated ECs and mAb1A29-coated probes. These results demonstrated that reduced EC basal NO lead to a rapid increase in ICAM-1 adhesive binding via Src-mediated phosphorylation without de novo protein synthesis and translocation. This study suggests that a NO-dependent conformational change of constitutive EC membrane ICAM-1 might be the mechanism of rapid ICAM-1 dependent leukocyte adhesion observed in vivo. This new mechanistic insight provides a better understanding of EC/leukocyte interaction-mediated vascular inflammation under many disease conditions that encounter reduced basal NO in the circulation system.

18.
Brain Res ; 1643: 140-51, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27131989

RESUMO

Traumatic brain injury (TBI) is the leading cause of trauma related morbidity in the developed world. TBI has been shown to trigger secondary injury cascades including endoplasmic reticulum (ER) stress, oxidative stress, and neuroinflammation. The link between secondary injury cascades and behavioral outcome following TBI is poorly understood warranting further investigation. Using our validated rodent blast TBI model, we examined the interaction of secondary injury cascades following single injury and how these interactions may contribute to impulsive-like behavior after a clinically relevant repetitive TBI paradigm. We targeted these secondary pathways acutely following single injury with the cellular stress modulator, salubrinal (SAL). We examined the neuroprotective effects of SAL administration on significantly reducing ER stress: janus-N-terminal kinase (JNK) phosphorylation and C/EBP homology protein (CHOP), oxidative stress: superoxide and carbonyls, and neuroinflammation: nuclear factor kappa beta (NFκB) activity, inducible nitric oxide synthase (iNOS) protein expression, and pro-inflammatory cytokines at 24h post-TBI. We then used the more clinically relevant repeat injury paradigm and observed elevated NFκB and iNOS activity. These injury cascades were associated with impulsive-like behavior measured on the elevated plus maze. SAL administration attenuated secondary iNOS activity at 72h following repetitive TBI, and most importantly prevented impulsive-like behavior. Overall, these results suggest a link between secondary injury cascades and impulsive-like behavior that can be modulated by SAL administration.


Assuntos
Lesões Encefálicas Traumáticas/complicações , Cinamatos/administração & dosagem , Encefalite/prevenção & controle , Comportamento Impulsivo/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Tioureia/análogos & derivados , Animais , Lesões Encefálicas Traumáticas/psicologia , Modelos Animais de Doenças , Encefalite/etiologia , Encefalite/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/metabolismo , Lobo Frontal/patologia , Masculino , Ratos , Ratos Sprague-Dawley , Tioureia/administração & dosagem
19.
J Syst Integr Neurosci ; 2(4)2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28299202

RESUMO

The failed translation of proposed therapeutic agents for ischemic stroke from preclinical to clinical studies has led to increased scrutiny of preclinical studies, namely the model and outcome measures utilized. Preclinical studies routinely use infarct volume as an experimental endpoint or measure in studies employing young-adult, healthy male animals despite the fact that clinically, ischemic stroke is a disease of the elderly and improvements in functional outcome from pre- to post-intervention remains the most widely utilized assessment. The validity of infarct volume as a surrogate measure for functional outcome remains unclear in clinical studies as well as preclinical studies, particularly those utilizing a more clinically relevant aged thromboembolic model. In this work, we will address the relationship between acute and chronic functional outcome and infarct volume using a variety of functional assessments ranging from more simplistic, subjective measurements such as the modified Neurologic Severity Score (mNSS), to more complex, objective measurements such as grip strength and inclined plane.

20.
Neuroreport ; 27(14): 1004-11, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27580401

RESUMO

Ketamine has been shown to produce rapid and robust antidepressant effects in depressed individuals; however, its abuse potential and adverse psychotomimetic effects limit its widespread use. Dextromethorphan (DM) may serve as a safer alternative on the basis of pharmacodynamic similarities to ketamine. In this proof-of-concept study, behavioral and biochemical analyses were carried out to evaluate the potential involvement of brain-derived neurotrophic factor (BDNF) in the antidepressant-like effects of DM in mice, with comparisons to ketamine and imipramine. Male Swiss, Webster mice were injected with DM, ketamine, or imipramine and their behaviors were evaluated in the forced-swim test and the open-field test. Western blots were used to measure BDNF and its precursor, pro-BDNF, protein expression in the hippocampus and the frontal cortex of these mice. Our results show that both DM and imipramine reduced immobility time in the forced-swim test without affecting locomotor activity, whereas ketamine reduced immobility time and increased locomotor activity. Ketamine also rapidly (within 40 min) increased pro-BDNF expression in an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-dependent manner in the hippocampus, whereas DM and imipramine did not alter pro-BDNF or BDNF levels in either the hippocampus or the frontal cortex within this timeframe. These data show that DM shares some features with both ketamine and imipramine. Additional studies examining DM may aid in the development of more rapid, safe, and efficacious antidepressant treatments.


Assuntos
Antidepressivos/farmacologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Dextrometorfano/farmacologia , Ketamina/farmacologia , Análise de Variância , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Relação Dose-Resposta a Droga , Comportamento Exploratório/efeitos dos fármacos , Masculino , Camundongos , Precursores de Proteínas/metabolismo , Quinoxalinas/farmacologia , Receptores de AMPA/metabolismo , Estatísticas não Paramétricas , Natação/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA