Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Hum Mol Genet ; 25(17): 3784-3797, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27436577

RESUMO

Glycogen storage disease type I (GSDI) is a rare metabolic disease due to glucose-6 phosphatase deficiency, characterized by fasting hypoglycemia. Patients also develop chronic kidney disease whose mechanisms are poorly understood. To decipher the process, we generated mice with a kidney-specific knockout of glucose-6 phosphatase (K.G6pc-/- mice) that exhibited the first signs of GSDI nephropathy after 6 months of G6pc deletion. We studied the natural course of renal deterioration in K.G6pc-/- mice for 18 months and observed the progressive deterioration of renal functions characterized by early tubular dysfunction and a later destruction of the glomerular filtration barrier. After 15 months, K.G6pc-/- mice developed tubular-glomerular fibrosis and podocyte injury, leading to the development of cysts and renal failure. On the basis of these findings, we were able to detect the development of cysts in 7 out of 32 GSDI patients, who developed advanced renal impairment. Of these 7 patients, 3 developed renal failure. In addition, no renal cysts were detected in six patients who showed early renal impairment. In conclusion, renal pathology in GSDI is characterized by progressive tubular dysfunction and the development of polycystic kidneys that probably leads to the development of irreversible renal failure in the late stages. Systematic observations of cyst development by kidney imaging should improve the evaluation of the disease's progression, independently of biochemical markers.


Assuntos
Barreira de Filtração Glomerular/patologia , Glucose-6-Fosfatase/genética , Doença de Depósito de Glicogênio Tipo I/complicações , Doenças Renais Císticas/etiologia , Insuficiência Renal/etiologia , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Modelos Animais de Doenças , Progressão da Doença , Feminino , Técnicas de Inativação de Genes , Barreira de Filtração Glomerular/fisiopatologia , Doença de Depósito de Glicogênio Tipo I/genética , Doença de Depósito de Glicogênio Tipo I/fisiopatologia , Humanos , Lactente , Doenças Renais Císticas/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Insuficiência Renal/patologia , Adulto Jovem
2.
Exp Biol Med (Maywood) ; 233(2): 219-28, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18222977

RESUMO

Mucositis, a common toxic side effect of chemotherapy, is characterized by an arrest of cell proliferation and a loss of gut barrier function, which may cause treatment reduction or withdrawal. Gut integrity depends on nutritional and metabolic factors, including the balance between protein synthesis and proteolysis. The effects of methotrexate (MTX; a frequently used chemotherapeutic agent) on intestinal proteolysis and gut barrier function were investigated in rats. Male Sprague-Dawley rats received 2.5 mg/kg of MTX subcutaneously during 3 days and were euthanized at Day 4 (D4) or Day 7 (D7). We observed at D4 that MTX induced mucosal damage and increased intestinal permeability (7-fold) and the mucosal concentration of interleukin (IL)-1beta and IL-6 (4- to 6-fold). In addition, villus height and glutathione content significantly decreased. Intestinal proteolysis was also affected by MTX as cathepsin D activity increased at D4, whereas chymotrypsin-like proteasome activity decreased and calpain activities remained unaffected. At D7, cathepsin D activity was restored to control levels, but proteasome activity remained reduced. This disruption of proteolysis pathways strongly contributed to mucositis and requires further study. Lysosomal proteolytic activity may be considered the main proteolytic pathway responsible for alteration of mucosal integrity and intestinal permeability during mucositis, as cathepsin D activity was found to be correlated with mucosal atrophy and intestinal permeability. Proteasome regulation could possibly be an adaptive process for survival. Future investigation is warranted to target proteolytic pathways with protective nutritional or pharmacological therapies during mucositis.


Assuntos
Metotrexato/farmacologia , Mucosite/induzido quimicamente , Mucosite/enzimologia , Peptídeo Hidrolases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Proliferação de Células , Citocinas/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Glutationa/metabolismo , Absorção Intestinal/efeitos dos fármacos , Jejuno/metabolismo , Masculino , Mucosite/patologia , Ratos , Ratos Sprague-Dawley
3.
Biochimie ; 88(7): 759-65, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16488064

RESUMO

Protein metabolism contributes in the regulation of gut barrier function, which may be altered during inflammatory states. There are three major proteolytic pathways in mammalian cells: lysosomal, Ca(2+)-activated and ubiquitin-proteasome. The regulation of proteolytic activities during inflammation remains unknown in intestine. Intestinal epithelial cells, HCT-8, were stimulated by IL-1beta, IFNgamma and TNFalpha each alone or in combination (Cytomix). Proteolytic activities were assessed using fluorogenic substrates and specific inhibitors, protein expressions by Western blot. Lysosomal and Ca(2+)-activated pathways were not significantly altered by any treatment. In contrast, the activity of ubiquitin-proteasome system was stimulated by IFNgamma and Cytomix (155, 160 versus 100, P<0.05, respectively) but remained unaffected by IL-1beta and TNFalpha. Free ubiquitin expression, but not ubiquitinated proteins, was enhanced by IFNgamma and Cytomix. The expression of proteasome 20S alpha1 subunit, a constitutive proteasome 20S subunit, was not altered, beta5 subunit expression was weakly decreased by Cytomix and inducible beta5i subunit expression was markedly increased in response to IFNgamma and to Cytomix (202, 206 versus 100, P<0.05, respectively). In conclusion, lysosomal, Ca(2+)-activated and constitutive proteasome activities were not affected by IL-1beta, IFNgamma and TNFalpha alone or in combination, in HCT-8 cells. These results suggest that IFNgamma, but not IL-1beta and TNFalpha, increases immunoproteasome, which might contribute to enhanced antigen presentation during inflammatory bowel diseases.


Assuntos
Citocinas/farmacologia , Células Epiteliais/efeitos dos fármacos , Interferon gama/farmacologia , Proteínas/metabolismo , Acetilcisteína/análogos & derivados , Acetilcisteína/farmacologia , Western Blotting , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Expressão Gênica/efeitos dos fármacos , Humanos , Hidrólise/efeitos dos fármacos , Interferon gama/fisiologia , Interleucina-1/farmacologia , Interleucina-8/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Necrose Tumoral alfa/farmacologia , Ubiquitina/metabolismo , Ubiquitina C/genética , Ubiquitina C/metabolismo
4.
Orphanet J Rare Dis ; 6: 27, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21599942

RESUMO

Glucose-6-phosphatase deficiency (G6P deficiency), or glycogen storage disease type I (GSDI), is a group of inherited metabolic diseases, including types Ia and Ib, characterized by poor tolerance to fasting, growth retardation and hepatomegaly resulting from accumulation of glycogen and fat in the liver. Prevalence is unknown and annual incidence is around 1/100,000 births. GSDIa is the more frequent type, representing about 80% of GSDI patients. The disease commonly manifests, between the ages of 3 to 4 months by symptoms of hypoglycemia (tremors, seizures, cyanosis, apnea). Patients have poor tolerance to fasting, marked hepatomegaly, growth retardation (small stature and delayed puberty), generally improved by an appropriate diet, osteopenia and sometimes osteoporosis, full-cheeked round face, enlarged kydneys and platelet dysfunctions leading to frequent epistaxis. In addition, in GSDIb, neutropenia and neutrophil dysfunction are responsible for tendency towards infections, relapsing aphtous gingivostomatitis, and inflammatory bowel disease. Late complications are hepatic (adenomas with rare but possible transformation into hepatocarcinoma) and renal (glomerular hyperfiltration leading to proteinuria and sometimes to renal insufficiency). GSDI is caused by a dysfunction in the G6P system, a key step in the regulation of glycemia. The deficit concerns the catalytic subunit G6P-alpha (type Ia) which is restricted to expression in the liver, kidney and intestine, or the ubiquitously expressed G6P transporter (type Ib). Mutations in the genes G6PC (17q21) and SLC37A4 (11q23) respectively cause GSDIa and Ib. Many mutations have been identified in both genes,. Transmission is autosomal recessive. Diagnosis is based on clinical presentation, on abnormal basal values and absence of hyperglycemic response to glucagon. It can be confirmed by demonstrating a deficient activity of a G6P system component in a liver biopsy. To date, the diagnosis is most commonly confirmed by G6PC (GSDIa) or SLC37A4 (GSDIb) gene analysis, and the indications of liver biopsy to measure G6P activity are getting rarer and rarer. Differential diagnoses include the other GSDs, in particular type III (see this term). However, in GSDIII, glycemia and lactacidemia are high after a meal and low after a fast period (often with a later occurrence than that of type I). Primary liver tumors and Pepper syndrome (hepatic metastases of neuroblastoma) may be evoked but are easily ruled out through clinical and ultrasound data. Antenatal diagnosis is possible through molecular analysis of amniocytes or chorionic villous cells. Pre-implantatory genetic diagnosis may also be discussed. Genetic counseling should be offered to patients and their families. The dietary treatment aims at avoiding hypoglycemia (frequent meals, nocturnal enteral feeding through a nasogastric tube, and later oral addition of uncooked starch) and acidosis (restricted fructose and galactose intake). Liver transplantation, performed on the basis of poor metabolic control and/or hepatocarcinoma, corrects hypoglycemia, but renal involvement may continue to progress and neutropenia is not always corrected in type Ib. Kidney transplantation can be performed in case of severe renal insufficiency. Combined liver-kidney grafts have been performed in a few cases. Prognosis is usually good: late hepatic and renal complications may occur, however, with adapted management, patients have almost normal life span. DISEASE NAME AND SYNONYMS: Glucose-6-phosphatase deficiency or G6P deficiency or glycogen storage disease type I or GSDI or type I glycogenosis or Von Gierke disease or Hepatorenal glycogenosis.


Assuntos
Doença de Depósito de Glicogênio Tipo I/patologia , Testes Genéticos , Doença de Depósito de Glicogênio Tipo I/dietoterapia , Doença de Depósito de Glicogênio Tipo I/epidemiologia , Doença de Depósito de Glicogênio Tipo I/genética , Humanos , Mutação
5.
JIMD Rep ; 1: 97-106, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-23430835

RESUMO

The development of hepatocellular adenomas in the liver of patients with glycogen storage disease type I is a well-known complication of the disease. Surgical procedures and perioperative managements described so far have reported persistent and important morbidity. We report here a series of six patients (three males and three females) who underwent hepatic resection, and we propose a new hemostatic management protocol comprising glucose infusion, corticosteroids, desmopressin, and antifibrinolytic drugs, used to prevent efficaciously hepatic hemorrhage due to glycogen storage disease (GSD) platelet dysfunction.

6.
Presse Med ; 37(7-8): 1172-7, 2008.
Artigo em Francês | MEDLINE | ID: mdl-18313893

RESUMO

Hepatic glycogen storage diseases are rare inherited conditions affecting glycogen metabolism. During the last twenty years, medical progress has allowed children who used to die before they reached the age of ten years to reach adulthood. It is important to know the natural history and long-term outcome of these patients to improve their treatment during childhood. To reach this goal, collaboration between pediatric specialists and those who treat adults is essential.


Assuntos
Doença de Depósito de Glicogênio Tipo I/fisiopatologia , Doença de Depósito de Glicogênio Tipo I/diagnóstico , Doença de Depósito de Glicogênio Tipo I/terapia , Doença de Depósito de Glicogênio Tipo III/diagnóstico , Doença de Depósito de Glicogênio Tipo III/fisiopatologia , Doença de Depósito de Glicogênio Tipo III/terapia , Doença de Depósito de Glicogênio Tipo IV/diagnóstico , Doença de Depósito de Glicogênio Tipo IV/fisiopatologia , Doença de Depósito de Glicogênio Tipo IV/terapia , Crescimento , Humanos , Hepatopatias/diagnóstico , Hepatopatias/fisiopatologia , Hepatopatias/terapia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Resultado do Tratamento
7.
J Nutr ; 136(6): 1461-5, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16702304

RESUMO

Glutamine, the most abundant amino acid in the human body, plays several important roles in the intestine. Recent studies showed that glutamine regulates protein metabolism and intestinal inflammation among other mechanisms by reducing proinflammatory cytokine release. Because regulation of the inflammatory response was shown to be linked to proteolysis regulation, we hypothesized that glutamine pretreatment could act on IL-8 production in human intestinal epithelial cells through the regulation of inhibitor kappaB (IkappaB) ubiquitination. The HCT-8 cells were pretreated for 24 h with 0.6, 2, or 10 mmol/L glutamine. IL-8 concentration and IkappaB (free and ubiquitinated) expressions were assessed by ELISA and immunoblotting, respectively. A pretreatment with 10 mmol/L glutamine decreased IL-8 production under both basal and proinflammatory conditions (both P < 0.05). In the presence of a proteasome inhibitor (MG132), the ubiquitin-IkappaBalpha complex expression was not significantly modified by glutamine under basal conditions but decreased significantly under proinflammatory conditions (P < 0.05). After the addition of 10 mmol/L of glutamine, the free IkappaBalpha expression increased under basal and stimulated conditions (both P < 0.05). A glutamine pretreatment of 10 mmol/L did not affect ubiquitin expression or proteasome activity. This study indicates that glutamine pretreatment may reduce the intestinal inflammatory response by limiting the proteolysis of IkappaBalpha.


Assuntos
Glutamina/farmacologia , Quinase I-kappa B/antagonistas & inibidores , Interleucina-8/biossíntese , Mucosa Intestinal/efeitos dos fármacos , Ubiquitina/metabolismo , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Humanos , Mucosa Intestinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA