Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 28(5): 7475-7487, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32225974

RESUMO

Quantum emitters in hexagonal boron nitride (hBN) have attracted significant interest due to their bright and narrowband photon emission even at room temperature. The wide-bandgap two-dimensional material incorporates crystal defects of yet-unknown configuration, introducing discrete energy levels with radiative transition frequencies in the visible spectral range. The commonly observed high brightness together with the moderate fluorescence lifetime indicates a high quantum efficiency, but the exact dynamics and the underlying energy level structure remain elusive. In this study we present a systematic and detailed analysis of the photon statistics recorded for several individual emitters. We extract the individual decay rates by modeling the second-order correlation functions using a set of rate equations based on an energy level scheme involving long-lived states. Our analysis clearly indicates excitation-power-dependent non-radiative couplings to at least two metastable levels and confirms a near unity quantum efficiency.

2.
Opt Express ; 25(13): 14809-14821, 2017 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-28789064

RESUMO

Magnetometers based on ensembles of nitrogen-vacancy centres are a promising platform for continuously sensing static and low-frequency magnetic fields. Their combination with phase-sensitive (lock-in) detection creates a highly versatile sensor with a sensitivity that is proportional to the derivative of the optical magnetic resonance lock-in spectrum, which is in turn dependant on the lock-in modulation parameters. Here we study the dependence of the lock-in spectral slope on the modulation of the spin-driving microwave field. Given the presence of the intrinsic nitrogen hyperfine spin transitions, we experimentally show that when the ratio between the hyperfine linewidth and their separation is ≳ 1/4, square-wave based frequency modulation generates the steepest slope at modulation depths exceeding the separation of the hyperfine lines, compared to sine-wave based modulation. We formulate a model for calculating lock-in spectra which shows excellent agreement with our experiments, and which shows that an optimum slope is achieved when the linewidth/separation ratio is ≲ 1/4 and the modulation depth is less then the resonance linewidth, irrespective of the modulation function used.

3.
Opt Express ; 24(24): 27715-27725, 2016 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-27906340

RESUMO

It is generally accepted that nitrogen-vacancy (NV) defects in bulk diamond are bright sources of luminescence. However, the exact value of their internal quantum efficiency (IQE) has not been measured so far. Here we use an implementation of Drexhage's scheme to quantify the IQE of shallow-implanted NV defects in a single-crystal bulk diamond. Using a spherical metallic mirror with a large radius of curvature compared to the optical spot size, we perform calibrated modifications of the local density of states around NV defects and observe the change of their total decay rate, which is further used for IQE quantification. We also show that at the excitation wavelength of 532 nm, photo-induced relaxation cannot be neglected even at moderate excitation powers well below the saturation level. For NV defects shallow implanted 4.5 ± 1 and 8 ± 2 nm below the diamond surface, we determine the quantum efficiency to be 0.70 ± 0.07 and 0.82 ± 0.08, respectively.

4.
Nano Lett ; 14(2): 663-9, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24471714

RESUMO

We demonstrate the excitation of single surface plasmon polaritons on a silver nanowire using a nitrogen vacancy center and the subsequent controlled coupling to a second silver nanowire. The coupling efficiency and thus the splitting ratio between the nanowires is controlled by adjusting the gap size between the wires with an atomic force microscope. By numerical methods, we estimate the splitting ratios for different gap sizes, and the results support the values obtained in the experiment.

5.
Nano Lett ; 13(3): 1221-5, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23414581

RESUMO

We report on coupling of a single nitrogen-vacancy (NV) center in a nanodiamond to the propagating gap mode of two parallel placed chemically grown silver nanowires. The coupled NV-center nanowire system is made by manipulating nanodiamonds and nanowires with the tip of an atomic force microscope cantilever. An efficient coupling of an NV-center to an easily accessible gap plasmon mode is demonstrated and we measure an enhancement of the spontaneous emission decay rate by a factor of 8.3.

6.
ACS Photonics ; 11(2): 339-347, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38405394

RESUMO

Semiconductor quantum dots (QDs) enable the generation of single and entangled photons, which are useful for various applications in photonic quantum technologies. Specifically for quantum communication via fiber-optical networks, operation in the telecom C-band centered around 1550 nm is ideal. The direct generation of QD-photons in this spectral range with high quantum-optical quality, however, remained challenging. Here, we demonstrate the coherent on-demand generation of indistinguishable photons in the telecom C-band from single QD devices consisting of InAs/InP QD-mesa structures heterogeneously integrated with a metallic reflector on a silicon wafer. Using pulsed two-photon resonant excitation of the biexciton-exciton radiative cascade, we observe Rabi rotations up to pulse areas of 4π and a high single-photon purity in terms of g(2)(0) = 0.005(1) and 0.015(1) for exciton and biexciton photons, respectively. Applying two independent experimental methods, based on fitting Rabi rotations in the emission intensity and performing photon cross-correlation measurements, we consistently obtain preparation fidelities at the π-pulse exceeding 80%. Finally, performing Hong-Ou-Mandel-type two-photon interference experiments, we obtain a photon-indistinguishability of the full photon wave packet of up to 35(3)%, representing a significant advancement in the photon-indistinguishability of single photons emitted directly in the telecom C-band.

7.
Nat Commun ; 15(1): 3358, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637520

RESUMO

Single indistinguishable photons at telecom C-band wavelengths are essential for quantum networks and the future quantum internet. However, high-throughput technology for single-photon generation at 1550 nm remained a missing building block to overcome present limitations in quantum communication and information technologies. Here, we demonstrate the high-throughput fabrication of quantum-photonic integrated devices operating at C-band wavelengths based on epitaxial semiconductor quantum dots. Our technique enables the deterministic integration of single pre-selected quantum emitters into microcavities based on circular Bragg gratings. Respective devices feature the triggered generation of single photons with ultra-high purity and record-high photon indistinguishability. Further improvements in yield and coherence properties will pave the way for implementing single-photon non-linear devices and advanced quantum networks at telecom wavelengths.

8.
Front Plant Sci ; 15: 1340304, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495372

RESUMO

Cryptochromes are widely dispersed flavoprotein photoreceptors that regulate numerous developmental responses to light in plants, as well as to stress and entrainment of the circadian clock in animals and humans. All cryptochromes are closely related to an ancient family of light-absorbing flavoenzymes known as photolyases, which use light as an energy source for DNA repair but themselves have no light sensing role. Here we review the means by which plant cryptochromes acquired a light sensing function. This transition involved subtle changes within the flavin binding pocket which gave rise to a visual photocycle consisting of light-inducible and dark-reversible flavin redox state transitions. In this photocycle, light first triggers flavin reduction from an initial dark-adapted resting state (FADox). The reduced state is the biologically active or 'lit' state, correlating with biological activity. Subsequently, the photoreduced flavin reoxidises back to the dark adapted or 'resting' state. Because the rate of reoxidation determines the lifetime of the signaling state, it significantly modulates biological activity. As a consequence of this redox photocycle Crys respond to both the wavelength and the intensity of light, but are in addition regulated by factors such as temperature, oxygen concentration, and cellular metabolites that alter rates of flavin reoxidation even independently of light. Mechanistically, flavin reduction is correlated with conformational change in the protein, which is thought to mediate biological activity through interaction with biological signaling partners. In addition, a second, entirely independent signaling mechanism arises from the cryptochrome photocycle in the form of reactive oxygen species (ROS). These are synthesized during flavin reoxidation, are known mediators of biotic and abiotic stress responses, and have been linked to Cry biological activity in plants and animals. Additional special properties arising from the cryptochrome photocycle include responsivity to electromagnetic fields and their applications in optogenetics. Finally, innovations in methodology such as the use of Nitrogen Vacancy (NV) diamond centers to follow cryptochrome magnetic field sensitivity in vivo are discussed, as well as the potential for a whole new technology of 'magneto-genetics' for future applications in synthetic biology and medicine.

9.
Opt Lett ; 38(19): 3838-41, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24081066

RESUMO

We demonstrate the coupling of a single nitrogen vacancy center in a nanodiamond to propagating plasmonic modes of mechanically etched silver nanowires. The mechanical etch is performed on single crystalline silver nanoplates by the tip of an atomic force microscope cantilever to produce wires with pre-designed lengths. We show that single plasmon propagation can be obtained in these wires, thus making these structures a platform for quantum information processing.

10.
ACS Appl Electron Mater ; 5(12): 6603-6610, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38162528

RESUMO

Spin-based applications of the negatively charged nitrogen-vacancy (NV) center in diamonds require an efficient spin readout. One approach is the spin-to-charge conversion (SCC), relying on mapping the spin states onto the neutral (NV0) and negative (NV-) charge states followed by a subsequent charge readout. With high charge-state stability, SCC enables extended measurement times, increasing precision and minimizing noise in the readout compared to the commonly used fluorescence detection. Nanoscale sensing applications, however, require shallow NV centers within a few nanometers distance from the surface where surface related effects might degrade the NV charge state. In this article, we investigate the charge state initialization and stability of single NV centers implanted ≈5 nm below the surface of a flat diamond plate. We demonstrate the SCC protocol on four shallow NV centers suitable for nanoscale sensing, obtaining a reduced readout noise of 5-6 times the spin-projection noise limit. We investigate the general applicability of the SCC for shallow NV centers and observe a correlation between the NV charge-state stability and readout noise. Coating the diamond with glycerol improves both the charge initialization and stability. Our results reveal the influence of the surface-related charge environment on the NV charge properties and motivate further investigations to functionalize the diamond surface with glycerol or other materials for charge-state stabilization and efficient spin-state readout of shallow NV centers suitable for nanoscale sensing.

11.
ACS Appl Nano Mater ; 6(23): 21671-21678, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38835900

RESUMO

Boron vacancies (VB-) in hexagonal boron -nitride (hBN) have sparked great interest in recent years due to their optical and spin properties. Since hBN can be readily integrated into devices where it interfaces a huge variety of other 2D materials, boron vacancies may serve as a precise sensor which can be deployed at very close proximity to many important materials systems. Boron vacancy defects may be produced by a number of existing methods, the use of which may depend on the final application. Any method should reproducibly generate defects with controlled density and desired pattern. To date, however, detailed studies of such methods are missing. In this paper, we study various techniques for the preparation of hBN flakes from bulk crystals and relevant postprocessing treatments, namely, focused ion beam (FIB) implantation, for creation of VB-s as a function of flake thickness and defect concentrations. We find that flake thickness plays an important role when optimizing implantation parameters, while careful sample cleaning proved important to achieve consistent results.

12.
Sci Rep ; 13(1): 12407, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37524855

RESUMO

Quantum sensors using solid state qubits have demonstrated outstanding sensitivity, beyond that possible using classical devices. In particular, those based on colour centres in diamond have demonstrated high sensitivity to magnetic field through exploiting the field-dependent emission of fluorescence under coherent control using microwaves. Given the highly biocompatible nature of diamond, sensing from biological samples is a key interdisciplinary application. In particular, the microscopic-scale study of living systems can be possible through recording of temperature and biomagnetic field. In this work, we use such a quantum sensor to demonstrate such microscopic-scale recording of electrical activity from neurons in fragile living brain tissue. By recording weak magnetic field induced by ionic currents in mouse corpus callosum axons, we accurately recover signals from neuronal action potential propagation while demonstrating in situ pharmacology. Our sensor allows recording of the electrical activity in neural circuits, disruption of which can shed light on the mechanisms of disease emergence. Unlike existing techniques for recording activity, which can require potentially damaging direct interaction, our sensing is entirely passive and remote from the sample. Our results open a promising new avenue for the microscopic recording of neuronal signals, offering the eventual prospect of microscopic imaging of electrical activity in the living mammalian brain.


Assuntos
Encéfalo , Diamante , Animais , Camundongos , Encéfalo/fisiologia , Campos Magnéticos , Neurônios/fisiologia , Fluorescência , Mamíferos
13.
Opt Express ; 20(22): 24614-22, 2012 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-23187224

RESUMO

We demonstrate propagation of plasmons in single crystalline silver nanostructures fabricated using a combination of a bottom-up and a top-down approach. Silver nanoplates of thickness around 65 nm and a surface area of about 100 µm(2) are made using a wet chemical method. Silver nanotips and nanowires are then sculptured by focused ion beam milling. The plasmons are excited by using the fluorescence from the redeposited silver clusters during the milling process. Propagation of plasmons in the nanowires is observed in the visible spectral region. We also observe a cavity effect by measuring the emission spectrum from the distal wire end.

14.
ACS Photonics ; 9(7): 2273-2279, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35880068

RESUMO

Whereas the Si photonic platform is highly attractive for scalable optical quantum information processing, it lacks practical solutions for efficient photon generation. Self-assembled semiconductor quantum dots (QDs) efficiently emit photons in the telecom bands (1460-1625 nm) and allow for heterogeneous integration with Si. In this work, we report on a novel, robust, and industry-compatible approach for achieving single-photon emission from InAs/InP QDs heterogeneously integrated with a Si substrate. As a proof of concept, we demonstrate a simple vertical emitting device, employing a metallic mirror beneath the QD emitter, and experimentally obtained photon extraction efficiencies of ∼10%. Nevertheless, the figures of merit of our structures are comparable with values previously only achieved for QDs emitting at shorter wavelength or by applying technically demanding fabrication processes. Our architecture and the simple fabrication procedure allows for the demonstration of high-purity single-photon generation with a second-order correlation function at zero time delay, g (2)(τ = 0) < 0.02, without any corrections at continuous wave excitation at the liquid helium temperature and preserved up to 50 K. For pulsed excitation, we achieve the as-measured g (2)(0) down to 0.205 ± 0.020 (0.114 ± 0.020 with background coincidences subtracted).

15.
Phys Rev Lett ; 106(9): 096801, 2011 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-21405642

RESUMO

We report on the controlled coupling of a single nitrogen-vacancy (NV) center to a surface plasmon mode propagating along a chemically grown silver nanowire (NW). We locate and optically characterize a single NV center in a uniform dielectric environment before we controllably position this emitter in the close proximity of the NW. We are thus able to control the coupling of this particular emitter to the NW and directly compare the photon emission properties before and after the coupling. The excitation of single plasmonic modes is witnessed and a total rate enhancement by a factor of up to 4.6 is demonstrated.

16.
Front Neurosci ; 15: 643614, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054404

RESUMO

Magnetometry based on nitrogen-vacancy (NV) centers in diamond is a novel technique capable of measuring magnetic fields with high sensitivity and high spatial resolution. With the further advancements of these sensors, they may open up novel approaches for the 2D imaging of neural signals in vitro. In the present study, we investigate the feasibility of NV-based imaging by numerically simulating the magnetic signal from the auditory pathway of a rodent brainstem slice (ventral cochlear nucleus, VCN, to the medial trapezoid body, MNTB) as stimulated by both electric and optic stimulation. The resulting signal from these two stimulation methods are evaluated and compared. A realistic pathway model was created based on published data of the neural morphologies and channel dynamics of the globular bushy cells in the VCN and their axonal projections to the principal cells in the MNTB. The pathway dynamics in response to optic and electric stimulation and the emitted magnetic fields were estimated using the cable equation. For simulating the optic stimulation, the light distribution in brain tissue was numerically estimated and used to model the optogenetic neural excitation based on a four state channelrhodopsin-2 (ChR2) model. The corresponding heating was also estimated, using the bio-heat equation and was found to be low (<2°C) even at excessively strong optic signals. A peak magnetic field strength of ∼0.5 and ∼0.1 nT was calculated from the auditory brainstem pathway after electrical and optical stimulation, respectively. By increasing the stimulating light intensity four-fold (far exceeding commonly used intensities) the peak magnetic signal strength only increased to 0.2 nT. Thus, while optogenetic stimulation would be favorable to avoid artefacts in the recordings, electric stimulation achieves higher peak fields. The present simulation study predicts that high-resolution magnetic imaging of the action potentials traveling along the auditory brainstem pathway will only be possible for next generation NV sensors. However, the existing sensors already have sufficient sensitivity to support the magnetic sensing of cumulated neural signals sampled from larger parts of the pathway, which might be a promising intermediate step toward further maturing this novel technology.

17.
Sci Rep ; 11(1): 2412, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510264

RESUMO

The ability to perform noninvasive and non-contact measurements of electric signals produced by action potentials is essential in biomedicine. A key method to do this is to remotely sense signals by the magnetic field they induce. Existing methods for magnetic field sensing of mammalian tissue, used in techniques such as magnetoencephalography of the brain, require cryogenically cooled superconducting detectors. These have many disadvantages in terms of high cost, flexibility and limited portability as well as poor spatial and temporal resolution. In this work we demonstrate an alternative technique for detecting magnetic fields generated by the current from action potentials in living tissue using nitrogen vacancy centres in diamond. With 50 pT/[Formula: see text] sensitivity, we show the first measurements of magnetic sensing from mammalian tissue with a diamond sensor using mouse muscle optogenetically activated with blue light. We show these proof of principle measurements can be performed in an ordinary, unshielded lab environment and that the signal can be easily recovered by digital signal processing techniques. Although as yet uncompetitive with probe electrophysiology in terms of sensitivity, we demonstrate the feasibility of sensing action potentials via magnetic field in mammals using a diamond quantum sensor, as a step towards microscopic imaging of electrical activity in a biological sample using nitrogen vacancy centres in diamond.


Assuntos
Técnicas Biossensoriais , Diamante , Fenômenos Eletrofisiológicos , Músculos/fisiologia , Animais , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Campos Magnéticos , Razão Sinal-Ruído
18.
Nanoscale ; 12(46): 23780-23788, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33232429

RESUMO

We report a new approach for monolithic integration of III-V materials into silicon, based on selective area growth and driven by a molten alloy in metal-organic vapor epitaxy. Our method includes elements of both selective area and droplet-mediated growths and combines the advantages of the two techniques. Using this approach, we obtain organized arrays of high crystalline quality InP insertions into (100) oriented Si substrates. Our detailed structural, morphological and optical studies reveal the conditions leading to defect formation. These conditions are then eliminated to optimize the process for obtaining dislocation-free InP nanostructures grown directly on Si and buried below the top surface. The PL signal from these structures exhibits a narrow peak at the InP bandgap energy. The fundamental aspects of the growth are studied by modeling the InP nucleation process. The model is fitted by our X-ray diffraction measurements and correlates well with the results of our transmission electron microscopy and optical investigations. Our method constitutes a new approach for the monolithic integration of active III-V materials into Si platforms and opens up new opportunities in active Si photonics.

19.
Sci Rep ; 8(1): 14807, 2018 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-30287884

RESUMO

We present a novel continuous dynamical decoupling scheme for the construction of a robust qubit in a three-level system. By means of a clock transition adjustment, we first show how robustness to environmental noise is achieved, while eliminating drive-noise, to first-order. We demonstrate this scheme with the spin sub-levels of the NV-centre's electronic ground state. By applying drive fields with moderate Rabi frequencies, the drive noise is eliminated and an improvement of 2 orders of magnitude in the coherence time is obtained compared to the pure dephasing time. We then show how the clock transition adjustment can be tuned to eliminate also the second-order effect of the environmental noise with moderate drive fields. A further detailed theoretical investigation suggests an additional improvement of more than 1 order of magnitude in the coherence time which is supported by simulations. Hence, our scheme predicts that the coherence time may be prolonged towards the lifetime-limit using a relatively simple experimental setup.

20.
Sci Rep ; 8(1): 4503, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29540789

RESUMO

We suggest a novel approach for wide-field imaging of the neural network dynamics of brain slices that uses highly sensitivity magnetometry based on nitrogen-vacancy (NV) centers in diamond. In-vitro recordings in brain slices is a proven method for the characterization of electrical neural activity and has strongly contributed to our understanding of the mechanisms that govern neural information processing. However, this traditional approach only acquires signals from a few positions, which severely limits its ability to characterize the dynamics of the underlying neural networks. We suggest to extend its scope using NV magnetometry-based imaging of the neural magnetic fields across the slice. Employing comprehensive computational simulations and theoretical analyses, we determine the spatiotemporal characteristics of the neural fields and the required key performance parameters of an NV magnetometry-based imaging setup. We investigate how the technical parameters determine the achievable spatial resolution for an optimal 2D reconstruction of neural currents from the measured field distributions. Finally, we compare the imaging of neural slice activity with that of a single planar pyramidal cell. Our results suggest that imaging of slice activity will be possible with the upcoming generation of NV magnetic field sensors, while single-shot imaging of planar cell activity remains challenging.


Assuntos
Mapeamento Encefálico , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Magnetometria , Rede Nervosa/diagnóstico por imagem , Imagem Óptica , Mapeamento Encefálico/métodos , Hipocampo/diagnóstico por imagem , Hipocampo/fisiologia , Campos Magnéticos , Magnetometria/métodos , Neurônios/fisiologia , Imagem Óptica/métodos , Análise Espaço-Temporal , Sinapses/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA