Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; 36(6): e2306326, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38043945

RESUMO

Regenerative medicine aims to restore tissue and organ function without the use of prosthetics and permanent implants. However, achieving this goal has been elusive, and the field remains mostly an academic discipline with few products widely used in clinical practice. From a materials science perspective, barriers include the lack of proregenerative biomaterials, a complex regulatory process to demonstrate safety and efficacy, and user adoption challenges. Although biomaterials, particularly biodegradable polymers, can play a major role in regenerative medicine, their suboptimal mechanical and degradation properties often limit their use, and they do not support inherent biological processes that facilitate tissue regeneration. As of 2020, nine synthetic biodegradable polymers used in medical devices are cleared or approved for use in the United States of America. Despite the limitations in the design, production, and marketing of these devices, this small number of biodegradable polymers has dominated the resorbable medical device market for the past 50 years. This perspective will review the history and applications of biodegradable polymers used in medical devices, highlight the need and requirements for regenerative biomaterials, and discuss the path behind the recent successful introduction of citrate-based biomaterials for manufacturing innovative medical products aimed at improving the outcome of musculoskeletal surgeries.


Assuntos
Materiais Biocompatíveis , Engenharia Tecidual , Materiais Biocompatíveis/farmacologia , Ácido Cítrico , Medicina Regenerativa , Polímeros , Citratos
2.
Pharmaceuticals (Basel) ; 17(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38794155

RESUMO

Though crucial for natural bone healing, local calcium ion (Ca2+) and phosphate ion (Pi) concentrations can exceed the cytotoxic limit leading to mitochondrial overload, oxidative stress, and cell death. For bone tissue engineering applications, H2S can be employed as a cytoprotective molecule to enhance mesenchymal stem cell (MSC) tolerance to cytotoxic Ca2+/Pi concentrations. Varied concentrations of sodium hydrogen sulfide (NaSH), a fast-releasing H2S donor, were applied to assess the influence of H2S on MSC proliferation. The results suggested a toxicity limit of 4 mM for NaSH and that 1 mM of NaSH could improve cell proliferation and differentiation in the presence of cytotoxic levels of Ca2+ (32 mM) and/or Pi (16 mM). To controllably deliver H2S over time, a novel donor molecule (thioglutamic acid-GluSH) was synthesized and evaluated for its H2S release profile. Excitingly, GluSH successfully maintained cytoprotective level of H2S over 7 days. Furthermore, MSCs exposed to cytotoxic Ca2+/Pi concentrations in the presence of GluSH were able to thrive and differentiate into osteoblasts. These findings suggest that the incorporation of a sustained H2S donor such as GluSH into CaP-based bone graft substitutes can facilitate considerable cytoprotection, making it an attractive option for complex bone regenerative engineering applications.

3.
ACS Nano ; 12(2): 1023-1032, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29406741

RESUMO

The successful treatment of chronic nonhealing wounds requires strategies that promote angiogenesis, collagen deposition, and re-epithelialization of the wound. Copper ions have been reported to stimulate angiogenesis; however, several applications of copper salts or oxides to the wound bed are required, leading to variable outcomes and raising toxicity concerns. We hypothesized that copper-based metal-organic framework nanoparticles (Cu-MOF NPs), referred to as HKUST-1, which are rapidly degraded in protein solutions, can be modified to slowly release Cu2+, resulting in reduced toxicity and improved wound healing rates. Folic acid was added during HKUST-1 synthesis to generate folic-acid-modified HKUST-1 (F-HKUST-1). The effect of folic acid incorporation on NP stability, size, hydrophobicity, surface area, and copper ion release profile was measured. In addition, cytotoxicity and in vitro cell migration processes due to F-HKUST-1 and HKUST-1 were evaluated. Wound closure rates were assessed using the splinted excisional dermal wound model in diabetic mice. The incorporation of folic acid into HKUST-1 enabled the slow release of copper ions, which reduced cytotoxicity and enhanced cell migration in vitro. In vivo, F-HKUST-1 induced angiogenesis, promoted collagen deposition and re-epithelialization, and increased wound closure rates. These results demonstrate that folic acid incorporation into HKUST-1 NPs is a simple, safe, and promising approach to control Cu2+ release, thus enabling the direct application of Cu-MOF NPs to wounds.


Assuntos
Cobre/química , Diabetes Mellitus Experimental/tratamento farmacológico , Ácido Fólico/farmacologia , Estruturas Metalorgânicas/química , Nanopartículas/química , Cicatrização/efeitos dos fármacos , Animais , Linhagem Celular , Ácido Fólico/química , Humanos , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA