Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Inf Model ; 63(3): 753-769, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36695777

RESUMO

The drop-weight impact test is an experiment that has been used for nearly 80 years to evaluate handling sensitivity of high explosives. Although the results of this test are known to have large statistical uncertainties, it is one of the most common tests due to its accessibility and modest material requirements. In this paper, we compile a large data set of drop-weight impact sensitivity test results (mainly performed at Los Alamos National Laboratory), along with a compendium of molecular and chemical descriptors for the explosives under test. These data consist of over 500 unique explosives, over 1000 repeat tests, and over 100 descriptors, for a total of about 1500 observations. We use random forest methods to estimate a model of explosive handling sensitivity as a function of chemical and molecular properties of the explosives under test. Our model predicts well across a wide range of explosive types, spanning a broad range of explosive performance and sensitivity. We find that properties related to explosive performance, such as heat of explosion, oxygen balance, and functional group, are highly predictive of explosive handling sensitivity. Yet, models that omit many of these properties still perform well. Our results suggest that there is not one or even several factors that explain explosive handling sensitivity, but that there are many complex, interrelated effects at play.


Assuntos
Substâncias Explosivas , Substâncias Explosivas/química , Temperatura Alta , Oxigênio
2.
J Phys Chem A ; 126(40): 7094-7101, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36196028

RESUMO

The photolytic stability of explosives and energetic functional groups is of importance for those who regularly handle or are exposed to explosives in typical environmental conditions. This study models the photolytic degradation of dodecane substituted with various energetic functional groups: azide, nitro, nitrate ester, and nitramine. For the studied molecules, it was found that excitons localize on the energetic functional group, no matter where they were initially formed, and thus, the predominant degradation pathway involves the degradation of the energetic functional group. The relative trends for both 4 and 8 eV excitation energies followed with what is expected from the relative stability of the energetic functional groups to thermal and sub-shock degradation. The one notable exception was the azide functional group; more work should be done to further understand the photolytic effects on the azide functional group.

3.
RSC Adv ; 13(14): 9304-9315, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36959879

RESUMO

Explosives exist in and are expected to withstand a variety of harsh environments up to and including ionizing radiation, though little is known about the chemical consequences of exposing explosives to an ionizing radiation field. This study focused on the radiation-induced chemical changes to a variety of common energetic functional groups by utilizing a consistent molecular backbone. Dodecane was substituted with azide, nitro, nitrate ester, and nitramine functional groups and γ-irradiated with 60Co in order to study how the functional group degraded along with what the relative stability to ionizing radiation was. Chemical changes were assessed using a combination of analysis techniques including: nuclear magnetic resonance (NMR) spectroscopy, gas chromatography of both the condensed and gas phases, Raman spectroscopy, and Fourier transform infrared (FTIR) spectroscopy. Results revealed that much of the damage to the molecules was on the energetic functional group and often concentrated on the trigger linkage, also known as the weakest bond in the molecule. The general trend from most to least susceptible to radiolytic damage was found to be D-ONO2 → D-N3 → D-NHNO2 → D-NO2. These results also appear to be in line with the relative stability of these functional groups to things such as photolysis, thermolysis, and explosive insults.

4.
ACS Omega ; 7(3): 2842-2849, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35097280

RESUMO

The aging of high explosives in an ionizing radiation field is not well understood, and little work has been done in the low dose and low dose rate regime. In this study, four explosives were exposed to low-level gamma irradiation from a 137Cs source: PETN, PATO, and PBX 9501 both with and without the Irganox 1010 stabilizer. Post-irradiation analysis included GC-MS of the headspace gas, SEM of the pellets and powder, NMR spectroscopy, DSC analysis, impact sensitivity tests, and ESD sensitivity tests. Overall, no significant change to the materials was seen for the dose and dose rate explored in this study. A small change in the 1H NMR spectrum of PETN was observed and SEM and ESD results suggest a surface energy change in PATO, but these differences are minor and do not appear to have a substantial impact on the handling safety.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38712333

RESUMO

Boehmite (γ-AlOOH) and gibbsite (α-Al-(OH)3) are important archetype (oxy)hydroxides of aluminum in nature that also play diverse roles across a plethora of industrial applications. Developing the ability to understand and predict the properties and characteristics of these materials, on the basis of their natural growth or synthesis pathways, is an important fundamental science enterprise with wide-ranging impacts. The present study describes bulk and surface characteristics of these novel materials in comprehensive detail, using a collectively sophisticated set of experimental capabilities, including a range of conventional laboratory solids analyses and national user facility analyses such as synchrotron X-ray absorption and scattering spectroscopies as well as small-angle neutron scattering. Their thermal stability is investigated using in situ temperature-dependent Raman spectroscopy. These pure and effectively defect-free materials are ideal for synthesis of advanced alumina products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA