Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Prog ; 21(3): 851-9, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15932265

RESUMO

Recovery of recombinant adenoviruses from infected mammalian cell cultures often requires multiple unit operations such as cell lysis for virus release, microfiltration for clarification, and ultrafiltration for concentration. While development of these multiple unit operations is relatively straightforward, implementation under aseptic conditions in a closed system can be challenging for the production of virus seed at industrial scales. In this study, we have developed a simple, single-step, scaleable process to effectively recover adenoviruses from infected PER.C6 cell cultures for the production of concentrated adenovirus seeds under aseptic conditions. Specifically, hollow fiber tangential flow filtration technology was applied to maximize cell lysis of infected cultures for virus release while simultaneously concentrating the virus to an appropriate level of volume reduction. Hollow fiber filters with small lumen diameter of 0.5 mm were chosen to maximize the wall shear for a highly effective cell lysis and virus release. Cell lysis and virus release were shown to correlate with the exposure time in the hollow fiber cartridge: the shear zone. In most cases, a virus recovery yield of more than 80% and a 15- to 20-fold concentration (or up to 95% volume reduction) was achieved in less than 2 h of processing time. The virus seeds prepared using this process at lab scale and at 300-L scale without clarification have been successfully tested for sterility and potency and used for subsequent infection with consistent virus productivity. This process should enable rapid production of adenovirus seeds with minimal unit operations and high efficiency recovery for adenovirus production at 1000-L scale.


Assuntos
Adenoviridae/crescimento & desenvolvimento , Adenoviridae/isolamento & purificação , Retina/virologia , Ultrafiltração/instrumentação , Ultrafiltração/métodos , Cultura de Vírus/instrumentação , Cultura de Vírus/métodos , Reatores Biológicos/microbiologia , Linhagem Celular , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Membranas Artificiais , Projetos Piloto , Porosidade , Retina/embriologia
2.
Biotechnol Prog ; 28(3): 887-91, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22505017

RESUMO

Biologic drugs, such as monoclonal antibodies, are commonly made using mammalian cells in culture. The cell lines used for manufacturing should ideally be clonal, meaning derived from a single cell, which represents a technically challenging process. Fetal bovine serum is often used to support low cell density cultures, however, from a regulatory perspective, it is preferable to avoid animal-derived components to increase process consistency and reduce the risk of contamination from adventitious agents. Chinese hamster ovary (CHO) cells are the most widely used cell line in industry and a large number of serum-free, protein-free, and fully chemically defined growth media are commercially available, although these media alone do not readily support efficient single cell cloning. In this work, we have developed a simple, fully defined, single-cell cloning media, specifically for CHO cells, using commercially available reagents. Our results show that a 1:1 mixture of CD-CHO™ and DMEM/F12 supplemented with 1.5 g/L of recombinant albumin (Albucult®) supports single cell cloning. This formulation can support recovery of single cells in 43% of cultures compared to 62% in the presence of serum.


Assuntos
Albuminas/metabolismo , Clonagem de Organismos , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Proteínas Recombinantes/metabolismo
3.
Mol Biotechnol ; 48(2): 109-15, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21104043

RESUMO

Transient gene expression systems in mammalian cells continue to grow in popularity due to their capacity to produce significant amounts of recombinant protein in a rapid and scalable manner, without the lengthy time periods and resources required for stable cell line development. Traditionally, production of recombinant monoclonal antibodies for pre-clinical assessment by transient expression in CHO cells has been hampered by low titers. In this report, we demonstrate transient monoclonal antibody titers of 140 mg/l with CHO cells using the episomal-based transient expression system, Epi-CHO. Such titers were achieved by implementing an optimized transfection protocol incorporating mild-hypothermia and through screening of a variety of chemically defined and serum-free media for their ability to support elevated and prolonged viable cell densities post-transfection, and in turn, improve recombinant protein yields. Further evidence supporting Epi-CHO's capacity to enhance transgene expression is provided, where we demonstrate higher transgene mRNA and protein levels of two monoclonal antibodies and a destabilized enhanced green fluorescent protein with Epi-CHO compared to cell lines deficient in plasmid DNA replication and/or retention post-transfection. The results demonstrate the Epi-CHO system's capacity for the rapid production of CHO cell-derived recombinant monoclonal antibodies in serum-free conditions.


Assuntos
Anticorpos Monoclonais/metabolismo , Proteínas Recombinantes/metabolismo , Animais , Anticorpos Monoclonais/genética , Western Blotting , Células CHO , Cricetinae , Cricetulus , Eletroforese em Gel de Poliacrilamida , Lipossomos , Proteínas Recombinantes/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA