Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de estudo
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(12): e2119105119, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35286188

RESUMO

SignificanceTemperature increases in Arctic regions have focused attention on permafrost degradation on land, whereas little is known about the dynamics of extensive glacial-age permafrost bodies now submerged under the vast Arctic Continental shelves. Repeated high-resolution bathymetric surveys show that extraordinarily rapid morphologic changes are occurring at the edge of the continental slope of the Canadian Beaufort Sea along what was once the seaward limit of relict Pleistocene permafrost. How widespread similar changes are on the Arctic shelves is unknown, as this is one of the first areas in the Arctic subjected to multiple multibeam bathymetric surveys. Rapid morphologic changes associated with active submarine permafrost thawing may be an important process in sculpturing the seafloor in other submarine permafrost settings.

2.
Geophys Res Lett ; 46(20): 11310-11320, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31894170

RESUMO

Rivers (on land) and turbidity currents (in the ocean) are the most important sediment transport processes on Earth. Yet how rivers generate turbidity currents as they enter the coastal ocean remains poorly understood. The current paradigm, based on laboratory experiments, is that turbidity currents are triggered when river plumes exceed a threshold sediment concentration of ~1 kg/m3. Here we present direct observations of an exceptionally dilute river plume, with sediment concentrations 1 order of magnitude below this threshold (0.07 kg/m3), which generated a fast (1.5 m/s), erosive, short-lived (6 min) turbidity current. However, no turbidity current occurred during subsequent river plumes. We infer that turbidity currents are generated when fine sediment, accumulating in a tidal turbidity maximum, is released during spring tide. This means that very dilute river plumes can generate turbidity currents more frequently and in a wider range of locations than previously thought.

3.
Nat Commun ; 11(1): 3129, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561722

RESUMO

Submarine channels are the primary conduits for terrestrial sediment, organic carbon, and pollutant transport to the deep sea. Submarine channels are far more difficult to monitor than rivers, and thus less well understood. Here we present 9 years of time-lapse mapping of an active submarine channel along its full length in Bute Inlet, Canada. Past studies suggested that meander-bend migration, levee-deposition, or migration of (supercritical-flow) bedforms controls the evolution of submarine channels. We show for the first time how rapid (100-450 m/year) upstream migration of 5-to-30 m high knickpoints can control submarine channel evolution. Knickpoint migration-related changes include deep (>25 m) erosion, and lateral migration of the channel. Knickpoints in rivers are created by external factors, such as tectonics, or base-level change. However, the knickpoints in Bute Inlet appear internally generated. Similar knickpoints are found in several submarine channels worldwide, and are thus globally important for how channels operate.

4.
Nat Commun ; 7: 11896, 2016 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-27283503

RESUMO

Field observations of turbidity currents remain scarce, and thus there is continued debate about their internal structure and how they modify underlying bedforms. Here, I present the results of a new imaging method that examines multiple surge-like turbidity currents within a delta front channel, as they pass over crescent-shaped bedforms. Seven discrete flows over a 2-h period vary in speed from 0.5 to 3.0 ms(-1). Only flows that exhibit a distinct acoustically attenuating layer at the base, appear to cause bedform migration. That layer thickens abruptly downstream of the bottom of the lee slope of the bedform, and the upper surface of the layer fluctuates rapidly at that point. The basal layer is inferred to reflect a strong near-bed gradient in density and the thickening is interpreted as a hydraulic jump. These results represent field-scale flow observations in support of a cyclic step origin of crescent-shaped bedforms.

5.
Mar Environ Res ; 56(1-2): 15-46, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12648948

RESUMO

Santa Monica Bay was mapped in 1996 using a high-resolution multibeam system, providing the first substantial update of the submarine geomorphology since the initial compilation by Shepard and Emery [(1941) Geol. Soc. Amer. Spec. Paper 31]. The multibeam mapping generated not only high-resolution bathymetry, but also coregistered, calibrated acoustic backscatter at 95 kHz. The geomorphology has been subdivided into six provinces; shelf, marginal plateau, submarine canyon, basin slope, apron, and basin. The dimensions, gradients, and backscatter characteristics of each province is described and related to a combination of tectonics, climate, sea level, and sediment supply. Fluctuations of eustatic sea level have had a profound effect on the area; by periodically eroding the surface of Santa Monica plateau, extending the mouth of the Los Angeles River to various locations along the shelf break, and by connecting submarine canyons to rivers. A wetter glacial climate undoubtedly generated more sediment to the rivers that then transported the increased sediment load to the low-stand coastline and canyon heads. The trends of Santa Monica Canyon and several bathymetric highs suggest a complex tectonic stress field that has controlled the various segments. There is no geomorphic evidence to suggest Redondo Canyon is fault controlled. The San Pedro fault can be extended more than 30 km to the northwest by the alignment of a series of bathymetric highs and abrupt changes in direction of channel thalwegs.


Assuntos
Monitoramento Ambiental , Geologia , Acústica , California , Fenômenos Geológicos , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA