Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Evol Biol ; 15: 281, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26667623

RESUMO

BACKGROUND: Collagens provide structural support and guidance cues within the extracellular matrix of metazoans. Mammalian collagens XIII, XXIII and XXV form a unique subgroup of type II transmembrane proteins, each comprising a short N-terminal cytosolic domain, a transmembrane domain and a largely collagenous ectodomain. We name these collagens as MACITs (Membrane-Associated Collagens with Interrupted Triple-helices), and here investigate their evolution and conserved properties. To date, these collagens have been studied only in mammals. Knowledge of the representation of MACITs in other extant metazoans is lacking. This question is of interest for understanding structural/functional relationships in the MACIT family and also for insight into the evolution of MACITs in relation to the secreted, fibrillar collagens that are present throughout the metazoa. RESULTS: MACITs are restricted to bilaterians and are represented in the Ecdysozoa, Hemichordata, Urochordata and Vertebrata (Gnathostomata). They were not identified in available early-diverging metazoans, Lophotrochozoa, Echinodermata, Cephalochordata or Vertebrata (Cyclostomata). Whereas invertebrates encode a single MACIT, collagens XIII/XXIII/XXV of jawed vertebrates are paralogues that originated from the two rounds of en-bloc genome duplication occurring early in vertebrate evolution. MACITs have conserved domain architecture in which a juxta-membrane furin-cleavage site and the C-terminal 34 residues are especially highly conserved, whereas the cytoplasmic domains are weakly conserved. To study protein expression and function in a metazoan with a single MACIT gene, we focused on Caenorhabditis elegans and its col-99 gene. A col-99 cDNA was cloned and expressed as protein in mammalian CHO cells, two antibodies against COL-99 protein were generated, and a col-99-bearing fosmid gene construct col-99::egfp::flag was used to generate transgenic C. elegans lines. The encoded COL-99 polypeptide is 85 kDa in size and forms a trimeric protein. COL-99 is plasma membrane-associated and undergoes furin-dependent ectodomain cleavage and shedding. COL-99 is detected in mouth, pharynx, body wall and the tail, mostly in motor neurons and muscle systems and is enriched at neuromuscular junctions. CONCLUSIONS: Through identification of MACITs in multiple metazoan phyla we developed a model for the evolution of MACITs. The experimental data demonstrate conservation of MACIT molecular and cellular properties and tissue localisations in the invertebrate, C. elegans.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Colágeno/genética , Evolução Molecular , Processamento Alternativo , Sequência de Aminoácidos , Animais , Células CHO , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Colágeno/química , Colágeno/metabolismo , Cricetinae , Cricetulus , Larva/metabolismo , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Alinhamento de Sequência
2.
J Neurosci ; 30(43): 14490-501, 2010 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-20980607

RESUMO

Although the Schwann cell basement membrane (BM) is required for normal Schwann cell terminal differentiation, the role of BM-associated collagens in peripheral nerve maturation is poorly understood. Collagen XV is a BM zone component strongly expressed in peripheral nerves, and we show that its absence in mice leads to loosely packed axons in C-fibers and polyaxonal myelination. The simultaneous lack of collagen XV and another peripheral nerve component affecting myelination, laminin α4, leads to severely impaired radial sorting and myelination, and the maturation of the nerve is permanently compromised, contrasting with the slow repair observed in Lama4-/- single knock-out mice. Moreover, the Col15a1-/-;Lama4-/- double knock-out (DKO) mice initially lack C-fibers and, even over 1 year of age have only a few, abnormal C-fibers. The Lama4-/- knock-out results in motor and tactile sensory impairment, which is exacerbated by a simultaneous Col15a1-/- knock-out, whereas sensitivity to heat-induced pain is increased in the DKO mice. Lack of collagen XV results in slower sensory nerve conduction, whereas the Lama4-/- and DKO mice exhibit increased sensory nerve action potentials and decreased compound muscle action potentials; x-ray diffraction revealed less mature myelin in the sciatic nerves of the latter than in controls. Ultrastructural analyses revealed changes in the Schwann cell BM in all three mutants, ranging from severe (DKO) to nearly normal (Col15a1-/-). Collagen XV thus contributes to peripheral nerve maturation and C-fiber formation, and its simultaneous deletion from neural BM zones with laminin α4 leads to a DKO phenotype distinct from those of both single knock-outs.


Assuntos
Membrana Basal/fisiologia , Colágeno/genética , Colágeno/fisiologia , Laminina/genética , Laminina/fisiologia , Nervos Periféricos/fisiologia , Distúrbios Somatossensoriais/genética , Potenciais de Ação/fisiologia , Animais , Axônios/fisiologia , Axônios/ultraestrutura , Membrana Basal/ultraestrutura , Comportamento Animal/fisiologia , Eletrofisiologia , Ensaio de Imunoadsorção Enzimática , Masculino , Camundongos , Camundongos Knockout , Microscopia Imunoeletrônica , Neurônios Motores/fisiologia , Bainha de Mielina/fisiologia , Fibras Nervosas Amielínicas/fisiologia , Condução Nervosa/fisiologia , Nervos Periféricos/ultraestrutura , Estimulação Física , Reflexo/fisiologia , Células Receptoras Sensoriais/fisiologia , Limiar Sensorial/fisiologia , Distúrbios Somatossensoriais/fisiopatologia , Difração de Raios X
3.
J Biol Chem ; 285(8): 5258-65, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-20040604

RESUMO

The C-terminal end of collagen XV, restin, has been the focus of several studies, but the functions of full-length collagen XV have remained unknown. We describe here studies on the production, purification, and function of collagen XV and the production of a monoclonal N-terminal antibody to it. Full-length human collagen XV was produced in insect cells using baculoviruses and purified from the cell culture medium. The yield was 15 mg/liter of cell culture medium. The collagen XV was shown to be trimeric, with disulfide bonds in the collagenous region. Rotary shadowing electron microscopy revealed rod-like molecules with a mean length of 241.8 nm and with a globular domain at one end. The globular domain was verified to be the N-terminal end by N-terminal antibody binding. The molecules show flexibility in their conformation, presumably due to the many interruptions in their collagenous domains. The ability of collagen XV to serve as a substrate for cells was tested in cell adhesion assays, and it was shown that cells did not bind to collagen XV-coated surfaces. When added to the culture medium of fibroblasts and fibrosarcoma cells, however, collagen XV rapidly bound to their fibronectin network. Solid phase assays showed that collagen XV binds to fibronectin, laminin, and vitronectin and that it binds to the collagen/gelatin-binding domain of fibronectin. No binding was detected to fibrillar collagens, fibril-associated collagens, or decorin. Interestingly, collagen XV was found to inhibit the adhesion and migration of fibrosarcoma cells when present in fibronectin-containing matrices.


Assuntos
Colágeno/química , Animais , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Colágeno/genética , Colágeno/isolamento & purificação , Colágeno/farmacologia , Decorina , Proteínas da Matriz Extracelular/química , Fibroblastos/metabolismo , Fibronectinas/química , Fibrossarcoma/metabolismo , Humanos , Laminina/química , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína/fisiologia , Proteoglicanas/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Vitronectina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA