RESUMO
The cyclic guanosine-3',5'-monophosphate (cGMP)-dependent protein kinase (PKG) was identified >25 y ago; however, efforts to obtain a structure of the entire PKG enzyme or catalytic domain from any species have failed. In malaria parasites, cooperative activation of PKG triggers crucial developmental transitions throughout the complex life cycle. We have determined the cGMP-free crystallographic structures of PKG from Plasmodium falciparum and Plasmodium vivax, revealing how key structural components, including an N-terminal autoinhibitory segment (AIS), four predicted cyclic nucleotide-binding domains (CNBs), and a kinase domain (KD), are arranged when the enzyme is inactive. The four CNBs and the KD are in a pentagonal configuration, with the AIS docked in the substrate site of the KD in a swapped-domain dimeric arrangement. We show that although the protein is predominantly a monomer (the dimer is unlikely to be representative of the physiological form), the binding of the AIS is necessary to keep Plasmodium PKG inactive. A major feature is a helix serving the dual role of the N-terminal helix of the KD as well as the capping helix of the neighboring CNB. A network of connecting helices between neighboring CNBs contributes to maintaining the kinase in its inactive conformation. We propose a scheme in which cooperative binding of cGMP, beginning at the CNB closest to the KD, transmits conformational changes around the pentagonal molecule in a structural relay mechanism, enabling PKG to orchestrate rapid, highly regulated developmental switches in response to dynamic modulation of cGMP levels in the parasite.
Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/química , Malária/genética , Plasmodium falciparum/química , Conformação Proteica , Sequência de Aminoácidos/genética , Animais , Sítios de Ligação/genética , Domínio Catalítico/genética , Cristalografia por Raios X , GMP Cíclico/química , Proteínas Quinases Dependentes de GMP Cíclico/genética , Proteínas Quinases Dependentes de GMP Cíclico/ultraestrutura , Humanos , Cinética , Malária/parasitologia , Plasmodium falciparum/patogenicidade , Plasmodium falciparum/ultraestrutura , Ligação ProteicaRESUMO
The life cycles of apicomplexan parasites progress in accordance with fluxes in cytosolic Ca(2+) Such fluxes are necessary for events like motility and egress from host cells. We used genetically encoded Ca(2+) indicators (GCaMPs) to develop a cell-based phenotypic screen for compounds that modulate Ca(2+) signaling in the model apicomplexan Toxoplasma gondii In doing so, we took advantage of the phosphodiesterase inhibitor zaprinast, which we show acts in part through cGMP-dependent protein kinase (protein kinase G; PKG) to raise levels of cytosolic Ca(2+) We define the pool of Ca(2+) regulated by PKG to be a neutral store distinct from the endoplasmic reticulum. Screening a library of 823 ATP mimetics, we identify both inhibitors and enhancers of Ca(2+) signaling. Two such compounds constitute novel PKG inhibitors and prevent zaprinast from increasing cytosolic Ca(2+) The enhancers identified are capable of releasing intracellular Ca(2+) stores independently of zaprinast or PKG. One of these enhancers blocks parasite egress and invasion and shows strong antiparasitic activity against T. gondii The same compound inhibits invasion of the most lethal malaria parasite, Plasmodium falciparum Inhibition of Ca(2+)-related phenotypes in these two apicomplexan parasites suggests that depletion of intracellular Ca(2+) stores by the enhancer may be an effective antiparasitic strategy. These results establish a powerful new strategy for identifying compounds that modulate the essential parasite signaling pathways regulated by Ca(2+), underscoring the importance of these pathways and the therapeutic potential of their inhibition.
Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Proteínas Quinases Dependentes de GMP Cíclico , Retículo Endoplasmático , Proteínas de Protozoários , Purinonas/farmacologia , Toxoplasma , Proteínas Quinases Dependentes de GMP Cíclico/genética , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Toxoplasma/genética , Toxoplasma/metabolismoRESUMO
FIKKs are parasite-specific protein kinases with distinctive sequence motifs and their biological roles have not been completely elucidated. Here, we report the first potent Cryptosporidium FIKK (CpFIKK) inhibitor. We identified 4b as a potent (IC50=0.2nM) inhibitor of CpFIKK catalytic activity. In addition, we identified both CpCDPK1 selective as well as dually acting CpFIKK-CDPK1 inhibitors from the same structural class of compounds. We evaluated these CpFIKK inhibitors for inhibition of parasite growth in vitro. The observed effects on parasite growth did not correlate with CpFIKK inhibition, suggesting that CpFIKK may not be involved in parasite growth.
Assuntos
Cryptosporidium/enzimologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/química , Sequência de Aminoácidos , Cryptosporidium/crescimento & desenvolvimento , Descoberta de Drogas , Humanos , Homologia de Sequência de Aminoácidos , Análise Espectral/métodos , Relação Estrutura-AtividadeRESUMO
The p300/CBP-associated factor (PCAF) and related GCN5 bromodomain-containing lysine acetyl transferases are members of subfamilyâ I of the bromodomain phylogenetic tree. Iterative cycles of rational inhibitor design and biophysical characterization led to the discovery of the triazolopthalazine-based L-45 (dubbed L-Moses) as the first potent, selective, and cell-active PCAF bromodomain (Brd) inhibitor. Synthesis from readily available (1R,2S)-(-)-norephedrine furnished L-45 in enantiopure form. L-45 was shown to disrupt PCAF-Brd histone H3.3 interaction in cells using a nanoBRET assay, and a co-crystal structure of L-45 with the homologous Brd PfGCN5 from Plasmodium falciparum rationalizes the high selectivity for PCAF and GCN5 bromodomains. Compound L-45 shows no observable cytotoxicity in peripheral blood mononuclear cells (PBMC), good cell-permeability, and metabolic stability in human and mouse liver microsomes, supporting its potential for inâ vivo use.
Assuntos
Compostos Azo/farmacologia , Descoberta de Drogas , Hidralazina/farmacologia , Sondas Moleculares/farmacologia , Fatores de Transcrição de p300-CBP/antagonistas & inibidores , Compostos Azo/síntese química , Compostos Azo/química , Relação Dose-Resposta a Droga , Hidralazina/síntese química , Hidralazina/química , Sondas Moleculares/síntese química , Sondas Moleculares/química , Estrutura Molecular , Relação Estrutura-AtividadeRESUMO
Many cellular functions in eukaryotic pathogens are mediated by the cyclic nucleotide binding (CNB) domain, which senses second messengers such as cyclic AMP and cyclic GMP. Although CNB domain-containing proteins have been identified in many pathogenic organisms, an incomplete understanding of how CNB domains in pathogens differ from other eukaryotic hosts has hindered the development of selective inhibitors for CNB domains associated with infectious diseases. Here, we identify and classify CNB domain-containing proteins in eukaryotic genomes to understand the evolutionary basis for CNB domain functional divergence in pathogens. We identify 359 CNB domain-containing proteins in 31 pathogenic organisms and classify them into distinct subfamilies based on sequence similarity within the CNB domain as well as functional domains associated with the CNB domain. Our study reveals novel subfamilies with pathogen-specific variations in the phosphate-binding cassette. Analyzing these variations in light of existing structural and functional data provides new insights into ligand specificity and promiscuity and clues for drug design. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases.
Assuntos
Evolução Molecular , Interações Hospedeiro-Patógeno/genética , Proteínas Quinases/genética , Estrutura Terciária de Proteína/genética , AMP Cíclico/química , AMP Cíclico/genética , GMP Cíclico/química , GMP Cíclico/genética , Desenho de Fármacos , Genoma , Humanos , Infecções/genética , Infecções/patologia , Filogenia , Ligação Proteica , Proteínas Quinases/química , Estrutura Terciária de Proteína/efeitos dos fármacos , Transdução de SinaisRESUMO
Calcium-regulated exocytosis is a ubiquitous process in eukaryotes, whereby secretory vesicles fuse with the plasma membrane and release their contents in response to an intracellular calcium surge. This process regulates various cellular functions such as plasma membrane repair in plants and animals, the discharge of defensive spikes in Paramecium, and the secretion of insulin from pancreatic cells, immune modulators from lymphocytes, and chemical transmitters from neurons. In animal cells, serine/threonine kinases including cAMP-dependent protein kinase, protein kinase C and calmodulin kinases have been implicated in calcium-signal transduction leading to regulated secretion. Although plants and protozoa also regulate secretion by means of intracellular calcium, the method by which these signals are relayed has not been explained. Here we show that the Toxoplasma gondii calcium-dependent protein kinase 1 (TgCDPK1) is an essential regulator of calcium-dependent exocytosis in this opportunistic human pathogen. Conditional suppression of TgCDPK1 revealed that it controls calcium-dependent secretion of specialized organelles called micronemes, resulting in a block of essential phenotypes including parasite motility, host-cell invasion, and egress. These phenotypes were recapitulated by using a chemical biology approach in which pyrazolopyrimidine-derived compounds specifically inhibited TgCDPK1 and disrupted the parasite's life cycle at stages dependent on microneme secretion. Inhibition was specific to TgCDPK1, because expression of a resistant mutant kinase reversed sensitivity to the inhibitor. TgCDPK1 is conserved among apicomplexans and belongs to a family of kinases shared with plants and ciliates, suggesting that related CDPKs may have a function in calcium-regulated secretion in other organisms. Because this kinase family is absent from mammalian hosts, it represents a validated target that may be exploitable for chemotherapy against T. gondii and related apicomplexans.
Assuntos
Exocitose , Proteínas Quinases/metabolismo , Toxoplasma/citologia , Toxoplasma/enzimologia , Sequência de Aminoácidos , Células Cultivadas , Fibroblastos/parasitologia , Prepúcio do Pênis , Técnicas de Inativação de Genes , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Masculino , Dados de Sequência Molecular , Organelas/metabolismo , Fenótipo , Proteínas Quinases/deficiência , Proteínas Quinases/genética , Proteína Fosfatase 1/química , Proteína Fosfatase 1/metabolismo , Toxoplasma/patogenicidade , Toxoplasma/fisiologiaRESUMO
African sleeping sickness or human African trypanosomiasis, caused by Trypanosoma brucei spp., is responsible for approximately 30,000 deaths each year. Available treatments for this disease are poor, with unacceptable efficacy and safety profiles, particularly in the late stage of the disease when the parasite has infected the central nervous system. Here we report the validation of a molecular target and the discovery of associated lead compounds with the potential to address this lack of suitable treatments. Inhibition of this target-T. brucei N-myristoyltransferase-leads to rapid killing of trypanosomes both in vitro and in vivo and cures trypanosomiasis in mice. These high-affinity inhibitors bind into the peptide substrate pocket of the enzyme and inhibit protein N-myristoylation in trypanosomes. The compounds identified have promising pharmaceutical properties and represent an opportunity to develop oral drugs to treat this devastating disease. Our studies validate T. brucei N-myristoyltransferase as a promising therapeutic target for human African trypanosomiasis.
Assuntos
Aciltransferases/antagonistas & inibidores , Antiparasitários/farmacologia , Antiparasitários/uso terapêutico , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/enzimologia , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/parasitologia , Aciltransferases/metabolismo , Aminopiridinas/química , Aminopiridinas/metabolismo , Aminopiridinas/farmacologia , Aminopiridinas/uso terapêutico , Animais , Antiparasitários/química , Antiparasitários/metabolismo , Ensaios Enzimáticos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Feminino , Humanos , Camundongos , Estrutura Molecular , Pirazóis/química , Pirazóis/metabolismo , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Ratos , Sulfonamidas/química , Sulfonamidas/metabolismo , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Fatores de Tempo , Trypanosoma brucei brucei/crescimento & desenvolvimentoRESUMO
We report the results of an in vitro screening assay targeting the intraerythrocytic form of the malaria parasite Plasmodium falciparum using a library of 560 prenyl-synthase inhibitors. Based on "growth-rescue" and enzyme-inhibition experiments, geranylgeranyl diphosphate synthase (GGPPS) is shown to be a major target for the most potent leads, BPH-703 and BPH-811, lipophilic analogs of the bone-resorption drugs zoledronate and risedronate. We determined the crystal structures of these inhibitors bound to a Plasmodium GGPPS finding that their head groups bind to the [Mg(2+)](3) cluster in the active site in a similar manner to that found with their more hydrophilic parents, whereas their hydrophobic tails occupy a long-hydrophobic tunnel spanning both molecules in the dimer. The results of isothermal-titration-calorimetric experiments show that both lipophilic bisphosphonates bind to GGPPS with, on average, a ΔG of -9 kcal mol(-1), only 0.5 kcal mol(-1) worse than the parent bisphosphonates, consistent with the observation that conversion to the lipophilic species has only a minor effect on enzyme activity. However, only the lipophilic species are active in cells. We also tested both compounds in mice, finding major decreases in parasitemia and 100% survival. These results are of broad general interest because they indicate that it may be possible to overcome barriers to cell penetration of existing bisphosphonate drugs in this and other systems by simple covalent modification to form lipophilic analogs that retain their enzyme-inhibition activity and are also effective in vitro and in vivo.
Assuntos
Antimaláricos/farmacologia , Difosfonatos/farmacologia , Ácido Etidrônico/análogos & derivados , Farnesiltranstransferase/antagonistas & inibidores , Imidazóis/farmacologia , Lipídeos/química , Plasmodium/efeitos dos fármacos , Plasmodium/enzimologia , Animais , Antimaláricos/química , Antimaláricos/uso terapêutico , Calorimetria , Cristalografia por Raios X , Difosfonatos/química , Difosfonatos/uso terapêutico , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Ácido Etidrônico/química , Ácido Etidrônico/farmacologia , Ácido Etidrônico/uso terapêutico , Farnesiltranstransferase/química , Farnesiltranstransferase/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Imidazóis/química , Imidazóis/uso terapêutico , Camundongos , Modelos Moleculares , Parasitemia/tratamento farmacológico , Parasitemia/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Plasmodium vivax/efeitos dos fármacos , Plasmodium vivax/enzimologia , Ligação Proteica/efeitos dos fármacos , Ácido Risedrônico , Análise de Sobrevida , Terpenos/química , Terpenos/metabolismo , Ácido ZoledrônicoRESUMO
The ATP-dependent caseinolytic protease, ClpP, is highly conserved in bacteria and in the organelles of different organisms. In cyanobacteria, plant plastids, and the apicoplast of the genus Plasmodium, a noncatalytic paralog of ClpP, termed ClpR, has been identified. ClpRs are found to form heterocomplexes with ClpP resulting in a ClpRP tetradecameric cylinder having less than 14 catalytic triads. The exact role of ClpR in such a complex remains enigmatic. Here we describe the x-ray crystal structure of ClpR protein heptamer from Plasmodium falciparum (PfClpR). This is the first structure of a ClpR protein. The structure shows that the PfClpR monomer adopts a fold similar to that of ClpP, but has a unique motif, which we named the R-motif, forming a ß turn located near the inactive catalytic triad in a three-dimensional space. The PfClpR heptamer exhibits a more open and flat ring than a ClpP heptamer. PfClpR was localized in the P. falciparum apicoplast as is the case of PfClpP. However, biochemical and structural data suggest that, contrary to what has been observed in other organisms, PfClpP and PfClpR do not form a stable heterocomplex in the apicoplast of P. falciparum.
Assuntos
Caseínas/metabolismo , Peptídeo Hidrolases/metabolismo , Plasmodium falciparum/enzimologia , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Técnica Indireta de Fluorescência para Anticorpo , Microscopia de Fluorescência , Modelos Moleculares , Dados de Sequência Molecular , Organelas/enzimologia , Peptídeo Hidrolases/química , Conformação Proteica , Proteólise , Homologia de Sequência de AminoácidosRESUMO
OBJECTIVE: To assess the cost-effectiveness of sacituzumab govitecan for treating relapsed or refractory metastatic triple-negative breast cancer (TNBC) in Singapore. METHODS: A three-state partitioned survival model was developed to evaluate the cost-effectiveness of sacituzumab govitecan from a healthcare system perspective over 5 years. Clinical inputs were obtained from the ASCENT trial. Health state utilities were retrieved from the literature and direct costs were sourced from public healthcare institutions in Singapore. Sensitivity and scenario analyses were conducted to explore the impact of uncertainties and assumptions on cost-effectiveness results. RESULTS: Compared with single-agent chemotherapy, sacituzumab govitecan was associated with a base-case incremental cost-effectiveness ratio (ICER) of S$328,000 (US$237,816) per quality-adjusted life year (QALY) gained. One-way sensitivity analyses showed that the ICER was most sensitive to the cost of sacituzumab govitecan and progression-free utility values. Regardless of variation in these parameters, the ICER remained high, and a substantial price reduction was required to reduce the ICER. CONCLUSION: At its current price, sacituzumab govitecan does not represent a cost-effective treatment for relapsed or refractory metastatic TNBC in Singapore. Our findings will be useful to inform funding decisions alongside other factors including clinical effectiveness, safety, and budget impact considerations.
Assuntos
Anticorpos Monoclonais Humanizados , Antineoplásicos , Camptotecina/análogos & derivados , Imunoconjugados , Neoplasias de Mama Triplo Negativas , Humanos , Análise Custo-Benefício , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , SingapuraRESUMO
The enzymes phosphomannomutase (PMM), phospho-N-acetylglucosamine mutase (PAGM) and phosphoglucomutase (PGM) reversibly catalyse the transfer of phosphate between the C6 and C1 hydroxyl groups of mannose, N-acetylglucosamine and glucose respectively. Although genes for a candidate PMM and a PAGM enzymes have been found in the Trypanosoma brucei genome, there is, surprisingly, no candidate gene for PGM. The TbPMM and TbPAGM genes were cloned and expressed in Escherichia coli and the TbPMM enzyme was crystallized and its structure solved at 1.85 Å resolution. Antibodies to the recombinant proteins localized endogenous TbPMM to glycosomes in the bloodstream form of the parasite, while TbPAGM localized to both the cytosol and glycosomes. Both recombinant enzymes were able to interconvert glucose-phosphates, as well as acting on their own definitive substrates. Analysis of sugar nucleotide levels in parasites with TbPMM or TbPAGM knocked down by RNA interference (RNAi) suggests that, in vivo, PGM activity is catalysed by both enzymes. This is the first example in any organism of PGM activity being completely replaced in this way and it explains why, uniquely, T. brucei has been able to lose its PGM gene. The RNAi data for TbPMM also showed that this is an essential gene for parasite growth.
Assuntos
Fosfoglucomutase/deficiência , Fosfotransferases (Fosfomutases)/metabolismo , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/genética , Acetilglucosamina/análogos & derivados , Acetilglucosamina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Glucose-6-Fosfato/metabolismo , Glucofosfatos/metabolismo , Cinética , Manosefosfatos/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Fases de Leitura Aberta , Fosfotransferases (Fosfomutases)/química , Fosfotransferases (Fosfomutases)/genética , Conformação Proteica , Transporte Proteico , Interferência de RNA , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de SequênciaRESUMO
Serine/threonine kinases secreted from rhoptry organelles constitute important virulence factors of Toxoplasma gondii. Rhoptry kinases are highly divergent and their structures and regulatory mechanism are hitherto unknown. Here, we report the X-ray crystal structures of two related pseudokinases named ROP2 and ROP8, which differ primarily in their substrate-binding site. ROP kinases contain a typical bilobate kinase fold and a novel N-terminal extension that both stabilizes the N-lobe and provides a unique means of regulation. Although ROP2 and ROP8 were catalytically inactive, they provided a template for homology modelling of the active kinase ROP18, a major virulence determinant of T. gondii. Autophosphorylation of key residues in the N-terminal extension resulted in ROP18 activation, which in turn phosphorylated ROP2 and ROP8. Mutagenesis and mass spectrometry experiments revealed that ROP18 was maximally activated when this phosphorylated N-terminus relieved autoinhibition resulting from extension of aliphatic side chains into the ATP-binding pocket. This novel means of regulation governs ROP kinases implicated in parasite virulence.
Assuntos
Proteínas Serina-Treonina Quinases/química , Proteínas de Protozoários/química , Toxoplasma/enzimologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Fosforilação , Filogenia , Conformação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismoRESUMO
Calcium-dependent protein kinases (CDPKs) are major effectors of calcium signaling in apicomplexan parasites like Toxoplasma and Plasmodium and control important processes of the parasite life cycle. Despite recently reported crystal structures of Toxoplasma gondii (Tg)CDPKs, several important questions about their regulation remain unanswered. Plasmodium falciparum (Pf)CDPK1 has emerged as a key player in the life cycle of the malaria parasite, as it may be involved in the invasion of the host cells. Molecular modeling and site-directed mutagenesis studies on PfCDPK1 suggested that several residues in the regulatory domain play a dual role, as they seem to contribute to the stabilization of both the active and inactive kinase. Mass spectrometry revealed that PfCDPK1 was autophosphorylated at several sites; some of these were placed at strategic locations and therefore were found to be critical for kinase activation. The N-terminal extension of PfCDPK1 was found to be important for PfCDPK1 activation. Unexpectedly, an ATP binding site in the NTE of PfCDPK1 was identified. Our studies highlight several novel features of PfCDPK1 regulation, which may be shared by other members of the CDPK family. These findings may also aid design of inhibitors against these important targets, which are absent from the host.
Assuntos
Proteínas Quinases/metabolismo , Trifosfato de Adenosina/metabolismo , Regulação da Expressão Gênica , Modelos Moleculares , Fosforilação , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/metabolismoRESUMO
Enterobacter cloacae subsp. cloacae strain ENHKU01 is a Gram-negative endophyte isolated from a diseased pepper (Capsicum annuum) plant in Hong Kong. This is the first complete genome sequence report of a plant-endophytic strain of E. cloacae subsp. cloacae.
Assuntos
DNA Bacteriano/química , DNA Bacteriano/genética , Enterobacter cloacae/genética , Genoma Bacteriano , Análise de Sequência de DNA , Capsicum/microbiologia , Endófitos/genética , Endófitos/isolamento & purificação , Enterobacter cloacae/isolamento & purificação , Hong Kong , Dados de Sequência Molecular , Doenças das Plantas/microbiologiaRESUMO
We present here a study of a eukaryotic trans-prenylsynthase from the malaria pathogen Plasmodium vivax. Based on the results of biochemical assays and contrary to previous indications, this enzyme catalyzes the production of geranylgeranyl pyrophosphate (GGPP) rather than farnesyl pyrophosphate (FPP). Structural analysis shows that the product length is constrained by a hydrophobic cavity formed primarily by a set of residues from the same subunit as the product as well as at least one other from the dimeric partner. Furthermore, Plasmodium GGPP synthase (GGPPS) can bind nitrogen-containing bisphosphonates (N-BPs) strongly with the energetically favorable cooperation of three Mg(2+), resulting in inhibition by this class of compounds at IC(50) concentrations below 100 nM. In contrast, human and yeast GGPPSs do not accommodate a third magnesium atom in the same manner, resulting in their insusceptibility to N-BPs. This differentiation is in part attributable to a deviation in a conserved motif known as the second aspartate-rich motif: whereas the aspartates at the start and end of the five-residue motif in FFPP synthases and P. vivax GGPPSs both participate in the coordination of the third Mg(2+), an asparagine is featured as the last residue in human and yeast GGPPSs, resulting in a different manner of interaction with nitrogen-containing ligands.
Assuntos
Geranil-Geranildifosfato Geranil-Geraniltransferase/química , Plasmodium vivax/enzimologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Difosfonatos/metabolismo , Difosfonatos/farmacologia , Inibidores Enzimáticos , Geranil-Geranildifosfato Geranil-Geraniltransferase/antagonistas & inibidores , Humanos , Interações Hidrofóbicas e Hidrofílicas , Concentração Inibidora 50 , Magnésio , Nitrogênio , Fosfatos de Poli-Isoprenil/biossíntese , LevedurasRESUMO
BACKGROUND: Plasmodium falciparum is the protozoan parasite primarily responsible for more than one million malarial deaths, annually, and is developing resistance to current therapies. Throughout its lifespan, the parasite is subjected to oxidative attack, so Plasmodium antioxidant defences are essential for its survival and are targets for disease control. RESULTS: To further understand the molecular aspects of the Plasmodium redox system, we solved 4 structures of Plasmodium peroxiredoxins (Prx). Our study has confirmed PvTrx-Px1 to be a hydrogen peroxide (H2O2)-sensitive peroxiredoxin. We have identified and characterized the novel toroid octameric oligomer of PyTrx-Px1, which may be attributed to the interplay of several factors including: (1) the orientation of the conserved surface/buried arginine of the NNLA(I/L)GRS-loop; and (2) the C-terminal tail positioning (also associated with the aforementioned conserved loop) which facilitates the intermolecular hydrogen bond between dimers (in an A-C fashion). In addition, a notable feature of the disulfide bonds in some of the Prx crystal structures is discussed. Finally, insight into the latter stages of the peroxiredoxin reaction coordinate is gained. Our structure of PyPrx6 is not only in the sulfinic acid (RSO2H) form, but it is also with glycerol bound in a way (not previously observed) indicative of product binding. CONCLUSIONS: The structural characterization of Plasmodium peroxiredoxins provided herein provides insight into their oligomerization and product binding which may facilitate the targeting of these antioxidant defences. Although the structural basis for the octameric oligomerization is further understood, the results yield more questions about the biological implications of the peroxiredoxin oligomerization, as multiple toroid configurations are now known. The crystal structure depicting the product bound active site gives insight into the overoxidation of the active site and allows further characterization of the leaving group chemistry.
Assuntos
Peroxirredoxinas/química , Peroxirredoxinas/metabolismo , Plasmodium/enzimologia , Multimerização Proteica , Sequência de Aminoácidos , Animais , Domínio Catalítico , Cristalografia por Raios X , Dissulfetos/química , Glicerol/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Oxirredução , Ligação Proteica , Estrutura Quaternária de Proteína , Ratos , Ácidos Sulfínicos/metabolismoRESUMO
A gene predicted to encode Trypanosoma brucei glucosamine 6-phosphate N-acetyltransferase (TbGNA1; EC 2.3.1.4) was cloned and expressed in Escherichia coli. The recombinant protein was enzymatically active, and its high-resolution crystal structure was obtained at 1.86 Å. Endogenous TbGNA1 protein was localized to the peroxisome-like microbody, the glycosome. A bloodstream-form T. brucei GNA1 conditional null mutant was constructed and shown to be unable to sustain growth in vitro under nonpermissive conditions, demonstrating that there are no metabolic or nutritional routes to UDP-GlcNAc other than via GlcNAc-6-phosphate. Analysis of the protein glycosylation phenotype of the TbGNA1 mutant under nonpermissive conditions revealed that poly-N-acetyllactosamine structures were greatly reduced in the parasite and that the glycosylation profile of the principal parasite surface coat component, the variant surface glycoprotein (VSG), was modified. The significance of results and the potential of TbGNA1 as a novel drug target for African sleeping sickness are discussed.
Assuntos
Glucosamina 6-Fosfato N-Acetiltransferase/química , Trypanosoma brucei brucei/enzimologia , Sequência de Aminoácidos , Cristalografia , Escherichia coli/genética , Técnicas de Inativação de Genes , Glucosamina 6-Fosfato N-Acetiltransferase/análise , Glucosamina 6-Fosfato N-Acetiltransferase/genética , Glucosamina 6-Fosfato N-Acetiltransferase/metabolismo , Espectrometria de Massas , Microcorpos/metabolismo , Dados de Sequência Molecular , Mutação , Filogenia , Polissacarídeos/análise , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Trypanosoma brucei brucei/genética , Tripanossomíase Africana , Glicoproteínas Variantes de Superfície de Trypanosoma/química , Glicoproteínas Variantes de Superfície de Trypanosoma/genéticaRESUMO
Cyclase-associated proteins (CAPs) are evolutionary conserved G-actin-binding proteins that regulate microfilament turnover. CAPs have a modular structure consisting of an N-terminal adenylate cyclase binding domain, a central proline-rich segment, and a C-terminal actin binding domain. Protozoan parasites of the phylum Apicomplexa, such as Cryptosporidium and the malaria parasite Plasmodium, express small CAP orthologs with homology to the C-terminal actin binding domain (C-CAP). Here, we demonstrate by reverse genetics that C-CAP is dispensable for the pathogenic Plasmodium blood stages. However, c-cap(-) parasites display a complete defect in oocyst development in the insect vector. By trans-species complementation we show that the Cryptosporidium parvum ortholog complements the Plasmodium gene functions. Purified recombinant C. parvum C-CAP protein binds actin monomers and prevents actin polymerization. The crystal structure of C. parvum C-CAP shows two monomers with a right-handed beta-helical fold intercalated at their C termini to form the putative physiological dimer. Our results reveal a specific vital role for an apicomplexan G-actin-binding protein during sporogony, the parasite replication phase that precedes formation of malaria transmission stages. This study also exemplifies how Plasmodium reverse genetics combined with biochemical and structural analyses of orthologous proteins can offer a fast track toward systematic gene characterization in apicomplexan parasites.
Assuntos
Actinas/química , Malária/metabolismo , Malária/transmissão , Proteínas dos Microfilamentos/química , Oocistos/metabolismo , Sequência de Aminoácidos , Animais , Cryptosporidium parvum/metabolismo , Culicidae , Humanos , Modelos Genéticos , Dados de Sequência Molecular , Fenótipo , Plasmodium/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/metabolismo , Homologia de Sequência de AminoácidosRESUMO
We recently determined the first structures of inactivated and calcium-activated calcium-dependent protein kinases (CDPKs) from Apicomplexa. Calcium binding triggered a large conformational change that constituted a new mechanism in calcium signaling and a novel EF-hand fold (CAD, for CDPK activation domain). Thus we set out to determine if this mechanism was universal to all CDPKs. We solved additional CDPK structures, including one from the species Plasmodium. We highlight the similarities in sequence and structure across apicomplexan and plant CDPKs, and strengthen our observations that this novel mechanism could be universal to canonical CDPKs. Our new structures demonstrate more detailed steps in the mechanism of calcium activation and possible key players in regulation. Residues involved in making the largest conformational change are the most conserved across Apicomplexa, leading us to propose that the mechanism is indeed conserved. CpCDPK3_CAD and PfCDPK_CAD were captured at a possible intermediate conformation, lending insight into the order of activation steps. PfCDPK3_CAD adopts an activated fold, despite having an inactive EF-hand sequence in the N-terminal lobe. We propose that for most apicomplexan CDPKs, the mode of activation will be similar to that seen in our structures, while specific regulation of the inactive and active forms will require further investigation.
Assuntos
Proteínas Quinases/química , Sequência de Aminoácidos , Ativação Enzimática , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Proteínas Quinases/metabolismo , Homologia de Sequência de AminoácidosRESUMO
One goal of the CASP community wide experiment on the critical assessment of techniques for protein structure prediction is to identify the current state of the art in protein structure prediction and modeling. A fundamental principle of CASP is blind prediction on a set of relevant protein targets, that is, the participating computational methods are tested on a common set of experimental target proteins, for which the experimental structures are not known at the time of modeling. Therefore, the CASP experiment would not have been possible without broad support of the experimental protein structural biology community. In this article, several experimental groups discuss the structures of the proteins which they provided as prediction targets for CASP9, highlighting structural and functional peculiarities of these structures: the long tail fiber protein gp37 from bacteriophage T4, the cyclic GMP-dependent protein kinase Iß dimerization/docking domain, the ectodomain of the JTB (jumping translocation breakpoint) transmembrane receptor, Autotaxin in complex with an inhibitor, the DNA-binding J-binding protein 1 domain essential for biosynthesis and maintenance of DNA base-J (ß-D-glucosyl-hydroxymethyluracil) in Trypanosoma and Leishmania, an so far uncharacterized 73 residue domain from Ruminococcus gnavus with a fold typical for PDZ-like domains, a domain from the phycobilisome core-membrane linker phycobiliprotein ApcE from Synechocystis, the heat shock protein 90 activators PFC0360w and PFC0270w from Plasmodium falciparum, and 2-oxo-3-deoxygalactonate kinase from Klebsiella pneumoniae.