RESUMO
BACKGROUND: Suboptimal performance during neuropsychological assessment renders cognitive test results invalid. However, suboptimal performance has rarely been investigated in multiple sclerosis (MS). OBJECTIVES: To investigate potential underlying mechanisms of suboptimal performance in MS. METHODS: Performance validity testing, neuropsychological assessments, neuroimaging, and questionnaires were analyzed in 99 MS outpatients with cognitive complaints. Based on performance validity testing patients were classified as valid or invalid performers, and based on neuropsychological test results as cognitively impaired or preserved. Group comparisons and correlational analyses were performed on demographics, patient-reported, and disease-related outcomes. RESULTS: Twenty percent displayed invalid performance. Invalid and valid performers did not differ regarding demographic, patient-reported, and disease-related outcomes. Disease severity of invalid and valid performers with cognitive impairment was comparable, but worse than cognitively preserved valid performers. Lower performance validity scores related to lower cognitive functioning, lower education, being male, and higher disability levels (p < 0.05). CONCLUSION: Suboptimal performance frequently occurs in patients with MS and cognitive complaints. In both clinical practice and in cognitive research, suboptimal performance should be considered in the interpretation of cognitive outcomes. Identification of factors that differentiate between suboptimal and optimal performers with cognitive impairment needs further exploration.
Assuntos
Disfunção Cognitiva , Esclerose Múltipla , Cognição , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/psicologia , Humanos , Masculino , Esclerose Múltipla/complicações , Esclerose Múltipla/psicologia , Testes Neuropsicológicos , Pacientes AmbulatoriaisRESUMO
BACKGROUND: Working memory deficits are common in multiple sclerosis (MS). The modified Story Memory Technique (mSMT) has been shown to improve new learning and memory in MS, but its effects on working memory (WM) are currently unknown. OBJECTIVE: The present study presents a secondary analysis of data from a larger double-blind, placebo-controlled, randomized clinical trial and examines changes in cerebral activation on a WM task following mSMT treatment. METHODS: Sixteen participants with clinically definite MS were randomly assigned to treatment (n=7) or placebo-control groups (n=9) matched for gender, age and education. Baseline and immediate follow-up functional Magnetic Resonance Imaging (fMRI) was obtained for all subjects. During fMRI participants completed an N-back task, consisting of 0-, 1-and 2-back conditions. RESULTS: Significant increases in cerebral activation were noted in the dorsolateral prefrontal cortex, supplementary motor area and inferior parietal lobule at follow-up in the treatment group. No significant changes were noted in the placebo control group. CONCLUSION: Due to the small sample size, results of the current study should be interpreted as preliminary. However, the observed pattern of activation of the frontoparietal network involved in WM found in the treatment group, suggests that mSMT training increases recruitment of attention- and WM-related neural networks. We conclude that mSMT treatment leads to changes in WM-related cerebral activation.