Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Pharmacol Ther ; 204: 107414, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31647974

RESUMO

The UDP glycosyltransferase (UGT) superfamily of enzymes is responsible for the metabolism and clearance of thousands of lipophilic chemicals including drugs, toxins and endogenous signaling molecules. They provide a protective interface between the organism and its chemical-rich environment, as well as controlling critical signaling pathways to maintain healthy tissue function. UGTs are associated with drug responses and interactions, as well as a wide range of diseases including cancer. The human genome contains 22 UGT genes; however as befitting their exceptionally diverse substrate ranges and biological activities, the output of these UGT genes is functionally diversified by multiple processes including alternative splicing, post-translational modification, homo- and hetero-oligomerization, and interactions with other proteins. All UGT genes are subject to extensive alternative splicing generating variant/truncated UGT proteins with altered functions including the capacity to dominantly modulate/inhibit cognate full-length forms. Heterotypic oligomerization of different UGTs can alter kinetic properties relative to monotypic complexes, and potentially produce novel substrate specificities. Moreover, the recently profiled interactions of UGTs with non-UGT proteins may facilitate coordination between different metabolic processes, as well as providing opportunities for UGTs to engage in novel 'moonlighting' functions. Herein we provide a detailed and comprehensive review of all known modes of UGT functional diversification and propose a UGTome model to describe the resulting expansion of metabolic capacity and its potential to modulate drug/xenobiotic responses and cell behaviours in normal and disease contexts.


Assuntos
Glicosiltransferases/fisiologia , Redes e Vias Metabólicas/fisiologia , Difosfato de Uridina/fisiologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA