Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Reproduction ; 139(1): 1-9, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19755486

RESUMO

We have recently documented that trisomy 21 mosaicism is common in human foetal ovaries. On the basis of this observation we propose that the maternal age effect in Down syndrome (DS) is caused by the differential behaviour of trisomy 21 in relation to disomy 21 oocytes during development from foetal life until ovulation in adulthood. In particular, we suggest that trisomy 21 oocytes, lagging behind those that are disomic, may escape the timed pruning of the seven million in foetal life to the 300-400 finally selected for ovulation. The net effect of this preferential elimination will be an accumulation of trisomy 21 oocytes in the ovarian reserve of older women. We here highlight the implications of this Oocyte Mosaicism Selection (OMS) model with respect to the prevalent view that the maternal age effect is complex, dependent on many different biological and environmental factors. We examine conclusions drawn from recent large-scale studies in families, tracing DNA markers along the length of chromosome 21q between parents and DS children, in comparison to the OMS model. We conclude that these family linkage data are equally compatible with the maternal age effect originating from the accumulation of trisomy 21 oocytes with advancing maternal age. One relatively straightforward way to get to grips with what is actually going on in this regard would be to compare incidence of trisomy 21 oocytes (and their pairing configurations) in foetal ovaries with that in oocytes at the meiosis I stage from adult women.


Assuntos
Envelhecimento/genética , Síndrome de Down/genética , Idade Materna , Mosaicismo , Oócitos/crescimento & desenvolvimento , Ovário/embriologia , Ovário/crescimento & desenvolvimento , Envelhecimento/fisiologia , Cromossomos Humanos Par 21/genética , Feminino , Ligação Genética , Marcadores Genéticos , Humanos , Masculino , Modelos Biológicos
2.
Mol Cytogenet ; 8: 67, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26300975

RESUMO

BACKGROUND: Trisomy 21 Down syndrome is the most common genetic cause for congenital malformations and intellectual disability. It is well known that in the outstanding majority of cases the extra chromosome 21 originates from the mother but only in less than 10 % from the father. The mechanism underlying this striking difference in parental origin of Trisomy 21 Down syndrome is still unknown. However, it seems likely that the main reason is a much higher stringency in the elimination of any trisomy 21 cells during fetal testicular than ovarian development. We have here focussed attention on the paternal gametic output, i.e. the incidence of disomy 21 in spermatozoa. RESULTS: We have used fluorescence in situ hybridisation (FISH) to determine the copy number of chromosome 21 in spermatozoa from 11 men with normal spermiograms. Due to the well-known risk of false positive and false negative signals using a single FISH probe, we have applied two chromosome 21q probes, and we have added a chromosome 18-specific probe to allow differentiation between disomy 21 and diploidy. Analysing a total number of 2000 spermatozoa per case, we documented an average incidence of disomy 21 at 0.13 %, with a range of 0.00-0.25 % and a SD of 0.08. There was no indication of diploidy in this cohort of 22,000 sperm. CONCLUSION: Numerous previous studies on the incidence of disomy 21 in sperm have been published, using FISH. As far as we are aware, none of these have applied more than a single chromosome 21-specific probe. Accepting our mean of 0.13 % of disomy 21, and providing there is no selective fertilisation capability of disomy 21 sperm in relation to the normal, we conclude that around 1 in 800 conceptions is expected to be trisomic for chromosome 21 of paternal origin. Bearing in mind that the maternal origin likely is at least 10 times more common, we tentatively propose that around 1 in 80 oocytes in the maternal ovarian reserve may be disomy 21. One reason for this discrepancy may be a more stringent selection against aberrant chromosome numbers during spermatogenesis than oogenesis. Further work is required to determine the relevant stages of spermatogenesis at which such a selection may take place.

3.
Radiat Res ; 162(2): 164-70, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15387144

RESUMO

The glycophorin A (GPA) somatic mutation assay was performed to evaluate the magnitude of exposure to ionizing radiation among the human population living in the vicinity of the Semipalatinsk nuclear test site in Kazakhstan. All together, 113 blood samples were analyzed from three generations of people living in villages that were under the trail of the radioactive cloud from the first Soviet surface nuclear test performed in August 1949 and from later tests. The oldest generation (P0) lived in the area at the time of testing, whereas the younger generations (F1, F2) were exposed to smaller doses from the residual fallout and later tests. The GPA assay did not reveal significant differences in the variant cell frequencies for all subjects selected from the Semipalatinsk area compared with 74 matched controls living in a noncontaminated area. However, a significant increase (P < 0.05) in the mean allele-loss ON variant frequency was observed among the exposed P0 generation (12 x 10(-6)) in comparison to controls (7 x 10(-6)). Considering the sensitivity of the GPA assay, the results suggest that the mean dose to the P0 generation of the affected villages was relatively low, a finding which is in accordance to the conclusions obtained from other biological assays performed on the same population.


Assuntos
Genética Populacional , Glicoforinas/genética , Mutação , Adolescente , Adulto , Idoso , Criança , Feminino , Humanos , Cazaquistão , Masculino , Pessoa de Meia-Idade
4.
J Clin Med ; 3(1): 167-75, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26237255

RESUMO

It has now been over 50 years since it was discovered that Down syndrome is caused by an extra chromosome 21, i.e., trisomy 21. In the interim, it has become clear that in the majority of cases, the extra chromosome is inherited from the mother, and there is, in this respect, a strong maternal age effect. Numerous investigations have been devoted to clarifying the underlying mechanism, most recently suggesting that this situation is exceedingly complex, involving both biological and environmental factors. On the other hand, it has also been proposed that germinal trisomy 21 mosaicism, arising during the very early stages of maternal oogenesis with accumulation of trisomy 21 germ cells during subsequent development, may be the main predisposing factor. We present data here on the incidence of trisomy 21 mosaicism in a cohort of normal fetal ovarian samples, indicating that an accumulation of trisomy 21 germ cells does indeed take place during fetal oogenesis, i.e., from the first to the second trimester of pregnancy. We presume that this accumulation of trisomy 21 (T21) cells is caused by their delay in maturation and lagging behind the normal cells. We further presume that this trend continues during the third trimester of pregnancy and postnatally, up until ovulation, thereby explaining the maternal age effect in Down syndrome.

5.
Mol Cytogenet ; 4: 10, 2011 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-21477316

RESUMO

BACKGROUND: It is now nearly a century since it was first discovered that crossovers between homologous parental chromosomes, originating at the Prophase stage of Meiosis I, are not randomly placed. In fact, the number and distribution of crossovers are strictly regulated with crossovers/chiasmata formed in optimal positions along the length of individual chromosomes, facilitating regular chromosome segregation at the first meiotic division. In spite of much research addressing this question, the underlying mechanism(s) for the phenomenon called crossover/chiasma interference is/are still unknown; and this constitutes an outstanding biological enigma. RESULTS: The Chromosome Oscillatory Movement (COM) model for crossover/chiasma interference implies that, during Prophase of Meiosis I, oscillatory movements of the telomeres (attached to the nuclear membrane) and the kinetochores (within the centromeres) create waves along the length of chromosome pairs (bivalents) so that crossing-over and chiasma formation is facilitated by the proximity of parental homologs induced at the nodal regions of the waves thus created. This model adequately explains the salient features of crossover/chiasma interference, where (1) there is normally at least one crossover/chiasma per bivalent, (2) the number is correlated to bivalent length, (3) the positions are dependent on the number per bivalent, (4) interference distances are on average longer over the centromere than along chromosome arms, and (5) there are significant changes in carriers of structural chromosome rearrangements. CONCLUSIONS: The crossover/chiasma frequency distribution in humans and mice with normal karyotypes as well as in carriers of structural chromosome rearrangements are those expected on the COM model. Further studies are underway to analyze mechanical/mathematical aspects of this model for the origin of crossover/chiasma interference, using string replicas of the homologous chromosomes at the Prophase stage of Meiosis I. The parameters to vary in this type of experiment will include: (1) the mitotic karyotype, i.e. ranked length and centromere index of the chromosomes involved, (2) the specific bivalent/multivalent length and flexibility, dependent on the way this structure is positioned within the nucleus and the size of the respective meiocyte nuclei, (3) the frequency characteristics of the oscillatory movements at respectively the telomeres and the kinetochores.

6.
Curr Genomics ; 11(6): 409-19, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21358985

RESUMO

It is well known that varying degrees of mosaicism for Trisomy 21, primarily a combination of normal and Trisomy 21 cells within individual tissues, may exist in the human population. This involves both Trisomy 21 mosaicism occurring in the germ line and Trisomy 21 mosaicism documented in different somatic tissues, or indeed a combination of both in the same subjects. Information on the incidence of Trisomy 21 mosaicism in different tissue samples from people with clinical features of Down syndrome as well as in the general population is, however, still limited. One of the main reasons for this lack of detailed knowledge is the technological problem of its identification, where in particular low grade/cryptic Trisomy 21 mosaicism, i.e. occurring in less than 3-5% of the respective tissues, can only be ascertained by fluorescence in situ hybridization (FISH) methods on large cell populations from the different tissue samples.In this review we summarize current knowledge in this field with special reference to the question on the likely incidence of germinal and somatic Trisomy 21 mosaicism in the general population and its mechanisms of origin. We also highlight the reproductive and clinical implications of this type of aneuploidy mosaicism for individual carriers. We conclude that the risk of begetting a child with Trisomy 21 Down syndrome most likely is related to the incidence of Trisomy 21 cells in the germ line of any carrier parent. The clinical implications for individual carriers may likewise be dependent on the incidence of Trisomy 21 in the relevant somatic tissues. Remarkably, for example, there are indications that Trisomy 21 mosaicism will predispose carriers to conditions such as childhood leukemia and Alzheimer's Disease but there is on the other hand a possibility that the risk of solid cancers may be substantially reduced.

7.
Mol Cytogenet ; 3: 4, 2010 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-20178584

RESUMO

BACKGROUND: Down syndrome (DS), characterized by an extra free chromosome 21 is the most common genetic cause for congenital malformations and learning disability. It is well known that the extra chromosome 21 originates from the mother in more than 90% of cases, the incidence increases with maternal age and there is a high recurrence in young women. In a previous report we have presented data to indicate that maternal trisomy 21 (T21) ovarian mosaicism might provide the major causative factor underlying these patterns of DS inheritance. One important outstanding question concerns the reason why the extra chromosome 21 in DS rarely originates from the father, i.e. in less than 10% of T21 DS cases. We here report data indicating that one reason for this parental sex difference is a very much lower degree of fetal testicular in comparison to ovarian T21 mosaicism. RESULTS: We used fluorescence in situ hybridisation (FISH) with two chromosome 21-specific probes to determine the copy number of chromosome 21 in fetal testicular cell nuclei from four male fetuses, following termination of pregnancy for a non-medical/social reason at gestational age 14-19 weeks. The cells studied were selected on the basis of their morphology alone, pending immunological specification of the relevant cell types. We could not detect any indication of testicular T21 mosaicism in any of these four male fetuses, when analysing at least 2000 cells per case (range 2038-3971, total 11.842). This result is highly statistically significant (p < 0.001) in comparison to the average of 0.54% ovarian T21 mosaicism (range 0.20-0.88%) that we identified in eight female fetuses analysing a total of 12.634 cells, as documented in a previous report in this journal. CONCLUSION: Based on these observations we suggest that there is a significant sex difference in degrees of fetal germ line T21 mosaicism. Thus, it would appear that most female fetuses are T21 ovarian mosaics, while in sharp contrast most male fetuses may be either very low grade T21 testicular mosaics or they may be non-mosaics. We further propose that this sex difference in germ line T21 mosaicism may explain the much less frequent paternal origin of T21 DS than maternal. The mechanisms underlying the DS cases, where the extra chromosome 21 does originate from the father, remains unknown and further studies in this respect are required.

8.
J Mol Diagn ; 12(6): 797-807, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20847278

RESUMO

The demographic tendency in industrial countries to delay childbearing, coupled with the maternal age effect in common chromosomal aneuploidies and the risk to the fetus of invasive prenatal diagnosis, are potent drivers for the development of strategies for noninvasive prenatal diagnosis. One breakthrough has been the discovery of differentially methylated cell-free fetal DNA in the maternal circulation. We describe novel bisulfite conversion- and methylation-sensitive enzyme digestion DNA methylation-related approaches that we used to diagnose Turner syndrome from first trimester samples. We used an X-linked marker, EF3, and an autosomal marker, RASSF1A, to discriminate between placental and maternal blood cell DNA using real-time methylation-specific PCR after bisulfite conversion and real-time PCR after methylation-sensitive restriction digestion. By normalizing EF3 amplifications versus RASSF1A outputs, we were able to calculate sex chromosome/autosome ratios in chorionic villus samples, thus permitting us to correctly diagnose Turner syndrome. The identification of this new marker coupled with the strategy outlined here may be instrumental in the development of an efficient, noninvasive method of diagnosis of sex chromosome aneuploidies in plasma samples.


Assuntos
Aneuploidia , Cromossomos Humanos X/genética , Metilação de DNA , Diagnóstico Pré-Natal/métodos , Biomarcadores/sangue , DNA/análise , Feminino , Feto/metabolismo , Feto/fisiologia , Humanos , Masculino , Placenta/fisiologia , Gravidez/sangue , Proteínas Supressoras de Tumor/sangue , Proteínas Supressoras de Tumor/genética , Síndrome de Turner/sangue , Síndrome de Turner/genética
9.
Mol Cytogenet ; 1: 21, 2008 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-18801168

RESUMO

BACKGROUND: Down syndrome, characterized by an extra chromosome 21 is the most common genetic cause for congenital malformations and learning disability. It is well known that the extra chromosome 21 most often originates from the mother, the incidence increases with maternal age, there may be aberrant maternal chromosome 21 recombination and there is a higher recurrence in young women. In spite of intensive efforts to understand the underlying reason(s) for these characteristics, the origin still remains unknown. We hypothesize that maternal trisomy 21 ovarian mosaicism might provide the major causative factor. RESULTS: We used fluorescence in situ hybridization (FISH) with two chromosome 21-specific probes to determine the copy number of chromosome 21 in ovarian cells from eight female foetuses at gestational age 14-22 weeks. All eight phenotypically normal female foetuses were found to be mosaics, containing ovarian cells with an extra chromosome 21. Trisomy 21 occurred with about the same frequency in cells that had entered meiosis as in pre-meiotic and ovarian mesenchymal stroma cells. CONCLUSION: We suggest that most normal female foetuses are trisomy 21 ovarian mosaics and the maternal age effect is caused by differential selection of these cells during foetal and postnatal development until ovulation. The exceptional occurrence of high-grade ovarian mosaicism may explain why some women have a child with Down syndrome already at young age as well as the associated increased incidence at subsequent conceptions. We also propose that our findings may explain the aberrant maternal recombination patterns previously found by family linkage analysis.

10.
Prenat Diagn ; 27(9): 824-9, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17604339

RESUMO

OBJECTIVE: Cell free foetal DNA (cff DNA) extracted from maternal plasma is now recognized as a potential source for prenatal diagnosis but the methodology is currently not well standardized. To evaluate different manual and automated DNA extraction methods with a view to developing standards, an International Workshop was performed. METHODS: Three plasma pools from RhD-negative pregnant women, a DNA standard, real-time-PCR protocol, primers and probes for RHD were sent to 12 laboratories and also to one company (Qiagen, Hilden, Germany). In pre-tests, pool 3 showed a low cff DNA concentration, pool 1 showed a higher concentration and pool 2 an intermediate concentration. RESULTS: The QIAamp DSP Virus Kit, the High Pure PCR Template Preparation Kit, an in-house protocol using the QIAamp DNA Blood Mini Kit, the CST genomic DNA purification kit, the Magna Pure LC, the MDx, the M48, the EZ1 and an in-house protocol using magnetic beads for manual and automated extraction were the methods that were able to reliably detect foetal RHD. The best results were obtained with the QIAamp DSP Virus Kit. The QIAamp DNA Blood Mini Kit showed very comparable results in laboratories that followed the manufacturer's protocol and started with > or = 500 microL plasma. One participant using the QIAamp DNA Blood Midi Kit failed to detect reliably RHD in pool 3. CONCLUSIONS: This workshop initiated a standardization process for extraction of cff DNA in maternal plasma. The highest yield was obtained by the QIAamp DSP Virus Kit, a result that will be evaluated in more detail in future studies.


Assuntos
DNA/sangue , DNA/isolamento & purificação , Feto , Testes Genéticos/métodos , Mães , Automação , Feminino , Feto/metabolismo , Testes Genéticos/normas , Humanos , Relações Materno-Fetais , Reação em Cadeia da Polimerase/métodos , Gravidez , Diagnóstico Pré-Natal/métodos , Diagnóstico Pré-Natal/normas
11.
Am J Hum Genet ; 70(6): 1469-79, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11992253

RESUMO

Abnormal patterns of meiotic recombination (i.e., crossing-over) are believed to increase the risk of chromosome nondisjunction in human oocytes. To date, information on recombination has been obtained using indirect, genetic methods. Here we use an immunocytological approach, based on detection of foci of a DNA mismatch-repair protein, MLH1, on synaptonemal complexes at prophase I of meiosis, to provide the first direct estimate of the frequency of meiotic recombination in human oocytes. At pachytene, the stage of maximum homologous chromosome pairing, we found a mean of 70.3 foci (i.e., crossovers) per oocyte, with considerable intercell variability (range 48-102 foci). This mean equates to a genetic-map length of 3,515 cM. The numbers and positions of foci were determined for chromosomes 21, 18, 13, and X. These chromosomes yielded means of 1.23 foci (61.5 cM), 2.36 foci (118 cM), 2.5 foci (125 cM), and 3.22 foci (161 cM), respectively. The foci were almost invariably located interstitially and were only occasionally located close to chromosome ends. These data confirm the large difference, in recombination frequency, between human oocytes and spermatocytes and demonstrate a clear intersex variation in distribution of crossovers. In a few cells, chromosomes 21 and 18 did not have any foci (i.e., were presumptively noncrossover); however, configurations that lacked foci were not observed for chromosomes 13 and X. For the latter two chromosome pairs, the only instances of absence of foci were observed in abnormal cells that showed chromosome-pairing errors affecting these chromosomes. We speculate that these abnormal fetal oocytes may be the source of the nonrecombinant chromosomes 13 and X suggested, by genetic studies, to be associated with maternally derived chromosome nondisjunction.


Assuntos
Cromossomos Humanos/genética , Feto/citologia , Meiose/genética , Oócitos/citologia , Oócitos/metabolismo , Recombinação Genética/genética , Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Transporte , Pareamento Cromossômico/genética , Segregação de Cromossomos/genética , Cromossomos Humanos/metabolismo , Troca Genética/genética , Feminino , Humanos , Hibridização in Situ Fluorescente , Masculino , Proteína 1 Homóloga a MutL , Proteínas de Neoplasias/metabolismo , Não Disjunção Genética , Proteínas Nucleares , Espermatócitos/citologia , Espermatócitos/metabolismo , Complexo Sinaptonêmico/metabolismo
12.
Reproduction ; 126(3): 279-97, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12968936

RESUMO

Molecular techniques have been developed for prenatal diagnosis of the most common chromosome disorders (trisomies 21, 13, 18 and sex chromosome aneuploidies) where results are available within a day or two. This involves fluorescence in situ hybridization (FISH) and microscopy analysis of fetal cells or quantitative fluorescence polymerase chain reaction (QF-PCR) on fetal DNA. Guidance is provided on the technological pitfalls in setting up and running these methods. Both methods are reliable, and the risk for misdiagnosis is low, although slightly higher for FISH. FISH is also more labour intensive than QF-PCR, the latter lending itself more easily to automation. These tests have been used as a preamble to full chromosome analysis by microscopy. However, there is a trend to apply the tests as 'stand-alone' tests for women who are at relatively low risk of having a baby with a chromosome disorder, in particular that associated with advanced age or results of maternal serum screening programmes. These women comprise the majority of those currently offered prenatal diagnosis with respect to fetal chromosome disorders and if introduced on a larger scale, the use of FISH and QF-PCR would lead to substantial economical savings. The implication, on the other hand, is that around one in 500 to one in 1000 cases with a mentally and/or physically disabling chromosome disorder would remain undiagnosed.


Assuntos
Transtornos Cromossômicos/diagnóstico , Diagnóstico Pré-Natal/métodos , Primers do DNA , Feminino , Humanos , Hibridização in Situ Fluorescente , Mosaicismo , Reação em Cadeia da Polimerase/métodos , Valor Preditivo dos Testes , Gravidez , Risco , Sensibilidade e Especificidade , Transtornos dos Cromossomos Sexuais/diagnóstico , Sequências de Repetição em Tandem , Trissomia/diagnóstico
13.
Chromosome Res ; 12(3): 197-213, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15125634

RESUMO

Cohesins are chromosomal proteins that form complexes involved in the maintenance of sister chromatid cohesion during division of somatic and germ cells. Three meiosis-specific cohesin subunits have been reported in mammals, REC8, STAG3 and SMC1 beta; their expression in mouse spermatocytes has also been described. Here we studied the localization of different meiotic and mitotic cohesin components during prophase I in human and murine female germ cells. In normal and atretic human fetal oocytes, from leptotene to diplotene stages, REC8 and STAG3 colocalize in fibers. In murine oocytes, SMC1beta, SMC3 and STAG3 are localized along fibers that correspond first to the chromosome axis and then to the synaptonemal complex in pachytene. Mitotic cohesin subunit RAD21 is also found in fibers that decorate the SC during prophase I in mouse oocytes, suggesting a role for this cohesin in mammalian sister chromatid cohesion in female meiosis. We observed that, unlike human oocytes, murine synaptonemal complex protein SYCP3 localizes to nucleoli throughout prophase I stages, and centromeres cluster in discrete locations from leptotene to dictyate. At difference from meiosis in male mice, the cohesin axis is progressively lost during the first week after birth in females with a parallel destruction of the axial elements at dictyate arrest, demonstrating sexual dimorphism in sister chromatid cohesion in meiosis.


Assuntos
Proteínas Nucleares/análise , Oócitos/química , Animais , Anticorpos/imunologia , Proteínas de Ciclo Celular/imunologia , Proteínas de Ciclo Celular/metabolismo , Centrômero/metabolismo , Proteoglicanas de Sulfatos de Condroitina/imunologia , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/imunologia , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA , Feminino , Imunofluorescência , Proteínas Fúngicas , Humanos , Meiose , Camundongos , Proteínas Nucleares/imunologia , Proteínas Nucleares/metabolismo , Oócitos/citologia , Oócitos/metabolismo , Fosfoproteínas/imunologia , Fosfoproteínas/metabolismo , Prófase , Coesinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA