Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 33(20)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35105825

RESUMO

Polyethylene terephthalate (PET) is widely used to elaborate biomaterials and medical devices in particular for long-term implant applications but tuning their surface properties remains challenging. We investigate surface functionalization by grafting poly(sodium 4-styrene sulfonate, PNaSS) with the aim of enhancing protein adhesion and cellular activity. Elucidating the topography and molecular level organization of the modified surfaces is important for understanding and predicting biological activity. In this work, we explore several grafting methods including thermal grafting, thermal grafting in the presence of Mohr's salt, and UV activation. We characterize the different surfaces obtained using atomic force microscopy (AFM), contact angle (CA), and x-ray photoelectron spectroscopy (XPS). We observe an increase in the percentage of sulfur atoms (XPS) that correlates with changes in (CA), and we identify by AFM characteristic features, which we interpret as patches of polymers on the PET surfaces. This work demonstrates tuning of biomaterials surface by functionalization and illustrates the capability of AFM to provide insights into the spatial organization of the grafted polymer.


Assuntos
Microscopia de Força Atômica , Polietilenotereftalatos/química , Polímeros/química , Ácidos Sulfônicos/química , Materiais Biocompatíveis/química , Espectroscopia Fotoeletrônica , Polimerização , Propriedades de Superfície
2.
Langmuir ; 36(37): 11005-11014, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32830496

RESUMO

To prevent the formation of biofilms on material surfaces, the latter must have antibacterial properties. The aim of this study is to investigate the synthesis and the antibacterial effect of a new N-halamine coating based on polydopamine (PDA). The benefits of this coating are multiple, notably the green process used to prepare it and the wide variety of organic or inorganic materials that can be functionalized. First, the formation of the PDA coating by oxidative polymerization of dopamine in weak alkaline aqueous solution was studied and characterized. Then, these PDA films were exposed to a NaOCl solution in order to form chloramine functions into the coating, i.e., to immobilize oxidative chlorine on and into the coating. The PDA film chlorination was notably followed in situ by a quartz crystal microbalance (QCM). The influence of the NaOCl solution pH and concentration on chlorination kinetics and on PDA film degradation was evidenced. Finally, the antibacterial properties of the modified PDA coatings were highlighted by testing their antiadhesion and bactericidal properties toward the Escherichia coli bacterial strain.


Assuntos
Indóis , Polímeros , Aminas , Antibacterianos/farmacologia , Indóis/farmacologia
3.
Int J Mol Sci ; 21(18)2020 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-32933215

RESUMO

Amphibian skin is a promising natural resource for antimicrobial peptides (AMPs), key effectors of innate immunity with attractive therapeutic potential to fight antibiotic-resistant pathogens. Our previous studies showed that the skin of the Sahara Frog (Pelophylax saharicus) contains broad-spectrum AMPs of the temporin family, named temporins-SH. Here, we focused our study on temporin-SHe, a temporin-SHd paralog that we have previously identified in this frog but was never structurally and functionally characterized. We synthesized and determined the structure of temporin-SHe. This non-amphipathic α-helical peptide was demonstrated to strongly destabilize the lipid chain packing of anionic multilamellar vesicles mimicking bacterial membranes. Investigation of the antimicrobial activity revealed that temporin-SHe targets Gram-negative and Gram-positive bacteria, including clinical isolates of multi-resistant Staphylococcus aureus strains. Temporin-SHe exhibited also antiparasitic activity toward different Leishmania species responsible for visceral leishmaniasis, as well as cutaneous and mucocutaneous forms. Functional assays revealed that temporin-SHe exerts bactericidal effects with membrane depolarization and permeabilization, via a membranolytic mechanism observed by scanning electron microscopy. Temporin-SHe represents a new member of the very limited group of antiparasitic temporins/AMPs. Despite its cytotoxicity, it is nevertheless an interesting tool to study the AMP antiparasitic mechanism and design new antibacterial/antiparasitic agents.


Assuntos
Antibacterianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Anuros/metabolismo , Leishmania/metabolismo , África do Norte , Sequência de Aminoácidos , Proteínas de Anfíbios/metabolismo , Proteínas de Anfíbios/farmacologia , Animais , Antibacterianos/farmacologia , Antiparasitários/metabolismo , Antiparasitários/farmacologia , Bactérias/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Conformação Proteica em alfa-Hélice/fisiologia , Pele/metabolismo , Células THP-1
4.
Molecules ; 24(4)2019 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-30813478

RESUMO

Proliferation of resistant bacteria on biomaterials is a major problem leading to nosocomial infections. Due to their broad-spectrum activity and their ability to disrupt bacterial membranes through a rapid membranolytic mechanism, antimicrobial peptides (AMPs) are less susceptible to the development of bacterial resistance and therefore represent good candidates for surface coating strategies to prevent biofilm formation. In this study, we report on the covalent immobilization of temporin-SHa, a small hydrophobic and low cationic antimicrobial peptide exhibiting broad-spectrum activity, and (SHa) analogs on modified gold surfaces. Several analogs derived from SHa with either a carboxamidated ([K³]SHa, d-[K³]SHa) or a carboxylated C-terminus ([K³]SHa-COOH) were used to achieve peptide grafting on gold surfaces modified by a thiolated self-assembled monolayer (SAM). Surface functionalization was characterized by polarization modulation infrared reflection absorption spectroscopy (PM-RAIRS) and X-ray photoemission spectroscopy (XPS). The antibacterial properties of the temporin-functionalized surfaces were tested against the Gram-positive Listeria ivanovii. Direct visualization of the peptide effects on the bacterial membrane was investigated by scanning electron microscopy equipped with a field emission gun (SEM-FEG). All active temporin analogs were successfully grafted and display significant antibacterial activity (from 80 to 90% killing efficiency) in addition to a 2-fold decrease of bacterial adhesion when all d-SHa analogs were used.


Assuntos
Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Proteínas/farmacologia , Biofilmes , Resistência Microbiana a Medicamentos , Ouro/química , Interações Hidrofóbicas e Hidrofílicas , Listeria/efeitos dos fármacos , Compostos de Sulfidrila/química , Propriedades de Superfície
5.
Biochim Biophys Acta ; 1858(11): 2699-2708, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27423268

RESUMO

The emergence of antibiotic-resistant clinical isolates and the decreased rate of development of new antibiotics are a constant threat to human health. In this context, the therapeutic value of mastoparan (MP), a toxin from wasp venom, has been extensively studied. However, since MP shows significant cytotoxic activities, further optimization is needed. Here we evaluated the antimicrobial and cytolytic activities of an MP analog created by Ala-substitution in positions 5 and 8, named [I5, R8] mastoparan ([I5, R8] MP). We found that [I5, R8] MP displayed a broad-spectrum antimicrobial activity against bacteria and fungi (MIC in the range 3-25µM), without being hemolytic or cytotoxic toward HEK-293 cells. In addition, [I5, R8] MP-amide was highly potent (MIC=3µM) against antibiotic-resistant bacteria. The interaction with microbial membranes was investigated revealing that [I5, R8] MP is able to form an active amphipathic α-helix conformation and to disturb membranes causing lysis and cell death. Based on our findings, we hypothesize that [I5, R8] MP follows a mechanism of action similar to that proposed for MP, where the pore-forming activity leads to cell death. Our results indicate that hydrophobic moment modified by amino acid substitution may enhance MP selectivity.


Assuntos
Substituição de Aminoácidos , Antibacterianos/farmacologia , Peptídeos/farmacologia , Venenos de Vespas/farmacologia , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/crescimento & desenvolvimento , Antibacterianos/síntese química , Antibacterianos/metabolismo , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/crescimento & desenvolvimento , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Células HEK293 , Hemólise/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Peptídeos e Proteínas de Sinalização Intercelular , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/crescimento & desenvolvimento , Listeria/efeitos dos fármacos , Listeria/crescimento & desenvolvimento , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Peptídeos/síntese química , Peptídeos/metabolismo , Estrutura Secundária de Proteína , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Especificidade da Espécie , Streptococcus pyogenes/efeitos dos fármacos , Streptococcus pyogenes/crescimento & desenvolvimento , Relação Estrutura-Atividade , Venenos de Vespas/síntese química , Venenos de Vespas/metabolismo
6.
Phys Chem Chem Phys ; 19(23): 15227-15238, 2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-28567462

RESUMO

The surface self-assembly properties of acidic sophorolipids, a bolaform microbial glycolipids with pH-responsive properties in solution, were studied based on the chemical nature of the support and pH of the solution. Sophorolipids generally form micelles in water but formation of morphologies like platelets and twisted fibers depending on pH have also been reported. The surface self-assembly was achieved using dip-coating on three different substrates namely gold, silicon(111) and TiO2 anatase. Deposition conditions (dip-coating withdrawal speed, relative humidity, temperature) were tested, and it was found that optimum self-assembly occurs at a withdrawal speed of 1 mm s-1, T of 25 °C and relative humidity of 25%. The local structure of the sophorolipid films was characterized by atomic force microscopy, while scanning electron microscopy was used to characterize the spatial homogeneity. We also attempted to correlate dispersive, electron donor and electron attractor surface energy components, using Good-van Oss's approach, and the behavior of sophorolipids. We found that when the surface energy is dominated by dispersive components, sophorolipids spontaneously assemble into entangled needles at all pH values (4, 6 and 11). However, when the surface energy is dominated by electronic components, pH has a strong influence on the surface self-assembly. We could discriminate three major organizations: homogeneous layer, isolated aggregates and a two-dimensional fibrillar network.

7.
Beilstein J Org Chem ; 13: 648-658, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28487759

RESUMO

Aniline-terminated self-assembled monolayers (SAMs) on gold surfaces have successfully reacted with ArSO2NHOSO2Ar (Ar = 4-MeC6H4 or 4-FC6H4) resulting in monolayers with sulfamide moieties and different end groups. Moreover, the sulfamide groups on the SAMs can be hydrolyzed showing the partial regeneration of the aniline surface. SAMs were characterized by water contact angle (WCA) measurements, Fourier-transform infrared reflection absorption spectroscopy (IRRAS) and X-ray photoelectron spectroscopy (XPS).

8.
Langmuir ; 32(51): 13759-13763, 2016 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-28024396

RESUMO

By changing the ultrahigh vacuum (UHV) deposition method, classical sublimation versus electrospray ionization, one can tune the chemistry of a chiral dipeptide molecule (Gly-Pro, GP), when adsorbed on a Cu(110) surface, from anionic to zwitterionic. This chemical shift will influence the adsorption mode of the dipeptide, either in a three-point fashion in the case of anionic GP molecules with a strong interaction among the copper surface, both O atoms of the carboxylate moiety, and the nitrogen atoms, or in the case of zwitterions GP, the adsorption mode relies on the sole interaction of one carboxylate oxygen atom. These different anchoring modes strongly modify the expression of surface 2D chirality and the supramolecular assemblies with two very distinct unit cells.


Assuntos
Cobre , Dipeptídeos/química , Adsorção , Estereoisomerismo
9.
Chemistry ; 21(41): 14555-61, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26285049

RESUMO

Despite the numerous studies on the self-assembled monolayers (SAMs) of alkylthiols on gold, the mechanisms involved, especially the nature and influence of the thiol-gold interface are still under debate. In this work the adsorption of aminothiols on Au(111) surfaces has been studied by using surface IR and X-ray photoelectron spectroscopy (XPS) as well as by density functional theory (DFT) modeling. Two aminothiols were used, cysteamine (CEA) and mercaptoundecylamine (MUAM), which contain two and eleven carbon atoms, respectively. By combining experimental and theoretical methods, it was possible to draw a molecular picture of the thiol-gold interface. The long-chain aminothiol produced better ordered SAMs, but, interestingly, the XPS data showed different sulfur binding environments depending on the alkyl chain length; an additional peak at low binding energy was observed upon CEA adsorption, which indicates the presence of sulfur in a different environment. DFT modeling showed that the positions of the sulfur atoms in the SAMs on gold with similar unit cells [(2√3×2√3)R30°] depended on the length of the alkyl chain. Short-chain alkylthiol SAMs were adsorbed more strongly than long-chain thiol SAMs and were shown to induce surface reconstruction by extracting atoms from the surface, possibly forming adatom/vacancy combinations that lead to the additional XPS peak. In the case of short alkylthiols, the thiol-gold interface governs the layer, CEA adsorbs strongly, and the mechanism is closer to single-molecule adsorption than self-assembly, whereas for long chains, interactions between alkyl chains drive the system to self-assembly, leading to a higher level of SAM organization and restricting the influence of the sulfur-gold interface.

10.
Appl Microbiol Biotechnol ; 99(11): 4879-91, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25592737

RESUMO

Legionella pneumophila, the major causative agent of Legionnaires' disease, is most often found in the environment in close association with free-living amoebae, leading to persistence, spread, biocide resistance, and elevated virulence of the bacterium. In the present study, we evaluated the anti-Legionella and anti-Acanthamoeba activities of three alpha-helical antimicrobial peptides (AMPs), namely, NK-2, Ci-MAM-A24, and Ci-PAP-A22, already known for the extraordinary efficacy against other microbes. Our data represent the first demonstration of the activity of a particular AMP against both the human facultative intracellular pathogen L. pneumophila and its pathogenic host, Acanthamoeba castellanii. Interestingly, the most effective peptide, Ci-MAM-A24, was also found to reduce the Legionella cell number within amoebae. Accordingly, this peptide was immobilized on gold surfaces to assess its antimicrobial activity. Surfaces were characterized, and activity studies revealed that the potent bactericidal activity of the peptide was conserved after its immobilization. In the frame of elaborating anti-Legionella surfaces, Ci-MAM-A24 represents, by its direct and indirect activity against Legionella, a potent peptide template for biological control of the bacterium in plumbings.


Assuntos
Acanthamoeba castellanii/efeitos dos fármacos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Legionella pneumophila/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Microscopia , Testes de Sensibilidade Parasitária
11.
Chirality ; 27(7): 411-6, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25847844

RESUMO

The adsorption of chiral Gly-Pro dipeptide on Cu(110) has been characterized by combining in situ polarization modulation infrared reflection absorption spectroscopy (PM-RAIRS) and X-ray photoelectron spectroscopy (XPS). The chemical state of the dipeptide, and its anchoring points and adsorption geometry, were determined at various coverage values. Gly-Pro molecules are present on Cu(110) in their anionic form (NH2 /COO(-)) and adsorb under a 3-point binding via both oxygen atoms of the carboxylate group and via the nitrogen atom of the amine group. Low-energy electron diffraction (LEED) and scanning tunneling microscopy (STM) have shown the presence of an extended 2D chiral array, sustained via intermolecular H-bonds interactions. Furthermore, due to the particular shape of the molecule, only one homochiral domain is formed, creating thus a truly chiral surface.


Assuntos
Cobre/química , Dipeptídeos/química , Elétrons , Microscopia de Tunelamento/métodos , Espectroscopia Fotoeletrônica/métodos , Espectrofotometria Infravermelho/métodos , Estereoisomerismo , Propriedades de Superfície
12.
Langmuir ; 30(1): 203-12, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24325337

RESUMO

A combination of XPS, in situ RAIRS, LEED, and STM experiments together with ab initio DFT calculations were used to elucidate the self-assembly properties at the atomic level, and enabled the interpretation of the expression of surface chirality upon adsorption of both enantiomers of methionine on a clean Au(111) surface under UHV conditions. The combination of experimental results, in particular, LEED and STM data with quantum chemical calculations is shown to be a successful setup strategy for addressing this challenge. It was found that the methionine molecular self-assembly consists of the first molecule lying parallel to the gold surface and the second interacting with the first methionine through a 2D H-bond network. The interaction with the gold surface is weak. The stability of the assembly is mainly due to the presence of intermolecular H bonds, resulting in the formation of ziplike dimer rows on the Au(111) surface. The methionine molecules interact with each other via their amino acid functional groups. The assembly shows an asymmetric pattern due to a slightly different orientation of the methionine molecules with respect to the surface. Simulations of the STM image of methionine assemblies were consistent with the experimental STM image. The present study shows another example of Au(111) stabilizing a self-assembled biological layer, which is not chemically perturbed by the surface.


Assuntos
Ouro/química , Metionina/síntese química , Metionina/química , Tamanho da Partícula , Teoria Quântica , Estereoisomerismo , Propriedades de Superfície
13.
J Pept Sci ; 20(7): 563-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24919960

RESUMO

Development of resistant bacteria onto biomaterials is a major problem leading to nosocomial infections. Antimicrobial peptides are good candidates for the generation of antimicrobial surfaces because of their broad-spectrum activity and their original mechanism of action (i.e. rapid lysis of the bacterial membrane) making them less susceptible to the development of bacterial resistance. In this study, we report on the covalent immobilisation of temporin-SHa on a gold surface modified by a thiolated self-assembled monolayer. Temporin-SHa (FLSGIVGMLGKLF amide) is a small hydrophobic and low cationic antimicrobial peptide with potent and very broad-spectrum activity against Gram-positive and Gram-negative bacteria, yeasts and parasites. We have analysed the influence of the binding mode of temporin-SHa on the antibacterial efficiency by using a covalent binding either via the peptide NH2 groups (random grafting of α- and ε-NH2 to the surface) or via its C-terminal end (oriented grafting using the analogue temporin-SHa-COOH). The surface functionalization was characterised by IR spectroscopy (polarisation modulation reflection absorption IR spectroscopy) while antibacterial activity against Listeria ivanovii was assessed by microscopy techniques, such as atomic force microscopy and scanning electron microscopy equipped with a field emission gun. Our results revealed that temporin-SHa retains its antimicrobial activity after covalent grafting. A higher amount of bound temporin-SHa is observed for the C-terminally oriented grafting compared with the random grafting (NH2 groups). Temporin-SHa therefore represents an attractive candidate as antimicrobial coating agent.


Assuntos
Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Ouro/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Listeria/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Propriedades de Superfície
14.
ACS Omega ; 9(23): 24574-24583, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38882165

RESUMO

Silver ions are antimicrobial agents with powerful action against bacteria. Applications in surface treatments, as Ag+-functionalized sol-gel coatings, are expected in the biomedical field to prevent contaminations and infections. The potential cytotoxicity of Ag+ cations toward human cells is well known though. However, few studies consider both the bactericidal activity and the biocompatibility of the Ag+-functionalized sol-gels. Here, we demonstrate that the cytotoxicity of Ag+ cations is circumvented, thanks to the ability of Ag+ cations to kill Escherichia coli (E. coli) much faster than normal human dermal fibroblasts (NHDFs). This phenomenon was investigated in the case of two silver nitrate-loaded sol-gel coatings: one with 0.5 w/w% Ag+ cations and the second with 2.5 w/w%. The maximal amount of released Ag+ ions over time (0.25 mg/L) was ten times lower than the minimal inhibition (MIC) and minimal bactericidal (MBC) concentrations (respectively, 2.5 and 16 mg/L) for E. coli and twice lower to the minimal cytotoxic concentration (0.5 mg/L) observed in NHDFs. E. coli were killed 8-18 times, respectively, faster than NHDFs by silver-loaded sol-gel coatings. This original approach, based on the kinetic control of the biological activity of Ag+ cations instead of a concentration effect, ensures the bactericidal protection while maintaining the biocompatibility of the Ag+ cation-functionalized sol-gels. This opens promising applications of silver-loaded sol-gel coatings for biomedical tools in short-term or indirect contacts with the skin.

15.
ACS Appl Mater Interfaces ; 15(28): 33382-33396, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37421359

RESUMO

A strategy was developed to prepare antibacterial surfaces by electropolymerization of a pyrrole-functionalized imidazolium ionic liquid bearing an halometallate anion. The objective was to combine the antibacterial efficiency of polypyrrole (PPy) with those of the ionic liquid's components (cation and anion). For this, N-(1-methyl-3-octylimidazolium)pyrrole bromide monomer [PyC8MIm]Br was synthesized and coordinated to ZnCl2 affording [PyC8MIm]Br-ZnCl2. The antibacterial properties of [PyC8MIm]Br-ZnCl2 monomer were evaluated against Escherichia coli and Staphylococcus aureus by measurement of the minimum inhibitory concentration (MIC) values. This monomer presents higher activity against S. aureus (MIC = 0.098 µmol·mL-1) than against E. coli (MIC = 2.10 µmol·mL-1). Mixtures of pyrrole and the pyrrole-functionalized ionic liquid [PyC8MIm]Br-ZnCl2 were then used for the electrodeposition of PPy films on Fluorine-doped tin oxide (FTO) substrates. The concentration of pyrrole was fixed to 50 mM, while the concentration of [PyC8MIm]Br-ZnCl2 was varied from 5 to 100 mM. The efficient incorporation of the imidazolium cation and zinc halometallate anion into the films was confirmed by X-ray photoelectron spectroscopy (XPS) measurements. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurements confirmed the homogeneity of the different films with structures that depend on the [PyC8MIm]Br-ZnCl2 concentration. The films' thickness determined by profilometry varies only slightly with the [PyC8MIm]Br-ZnCl2 concentration from 7.4 µm at 5 mM to 8.9 µM at 100 mM. The films become more hydrophilic with an increase of [PyC8MIm]Br-ZnCl2 concentration with water contact angles varying from 47° at the lowest concentration to 32° at the highest concentration. The antibacterial activities of the different PPy films were determined both by the halo inhibition method and by the colony forming units (CFUs) counting method over time against Gram-positive S. aureus and Gram-negative E. coli bacteria. Films obtained by incorporation of [PyC8MIm]Br-ZnCl2 showed excellent antibacterial properties, at least two times higher than those of neat PPy, validating our strategy. Furthermore, a comparison of the antibacterial properties of the films obtained using the same [PyC8MIm]Br-ZnCl2 concentration (50 mM) evidenced much better activity against Gram-positive (no bacterial survival within 5 min) than against Gram-negative bacteria (no bacterial survival within 3 h). Finally, the antibacterial performances over time could be tuned by the concentration of the employed pyrrole-functionalized ionic liquid monomer. Against E. coli, using 100 mM of [PyC8MIm]Br-ZnCl2, the bacteria were totally killed within a few minutes, using 50 mM, they were killed after 2 h while using 10 mM, about 20% of bacteria survived even after 6 h.


Assuntos
Líquidos Iônicos , Polímeros , Polímeros/farmacologia , Polímeros/química , Líquidos Iônicos/farmacologia , Líquidos Iônicos/química , Escherichia coli , Staphylococcus aureus , Pirróis/farmacologia , Pirróis/química , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana , Cátions
16.
Dalton Trans ; 52(18): 5859-5864, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37102620

RESUMO

We report on the first examples on the antibacterial activity towards Gram-negative and Gram-positive bacteria of 2D silver-based coordination polymers obtained by self-assembly with acetylenic dithioether ligands. Their structure imparts a good stability that allows a sustainable release of Ag+ in the media.

17.
J Am Chem Soc ; 134(15): 6579-83, 2012 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-22471692

RESUMO

Adsorption of biomolecules at metal surfaces often creates two-dimensional ordering of the adlayers. However, metal substrate reconstruction is less commonly observed, unless upon annealing of the molecule-surface system. Here, we report on the drastic room-temperature reconstruction of the Au(111) surface, driven by the adsorption of insulin growth factor tripeptide molecules. Scanning tunneling microscopy images show that the surface reconstruction, which takes place without annealing the system, is dynamic and evolves over time. It is initiated at kinks and steps edges, but the reconstruction also takes place within defect-free terraces. Theoretical calculations are performed to explain the reconstruction at the molecular level.


Assuntos
Ouro/química , Somatomedinas/química , Adsorção , Oligopeptídeos/química , Propriedades de Superfície
20.
Front Bioeng Biotechnol ; 10: 1008436, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36406217

RESUMO

As part of applications dealing with cardiovascular tissue engineering, drop-cast polyvinylidene fluoride (PVDF) scaffolds have been treated by cold plasma to enhance their adherence to cardiac cells. The scaffolds were treated in a dielectric barrier device where cold plasma was generated in a gaseous environment combining a carrier gas (helium or argon) with/without a reactive gas (molecular nitrogen). We show that an Ar-N2 plasma treatment of 10 min results in significant hydrophilization of the scaffolds, with contact angles as low as 52.4° instead of 132.2° for native PVDF scaffolds. Correlation between optical emission spectroscopy and X-ray photoelectron spectroscopy shows that OH radicals from the plasma phase can functionalize the surface scaffolds, resulting in improved wettability. For all plasma-treated PVDF scaffolds, the adhesion and maturation of primary cardiomyocytes is increased, showing a well-organized sarcomeric structure (α-actinin immunostaining). The efficacy of plasma treatment was also supported by real-time PCR analysis to demonstrate an increased expression of the genes related to adhesion and cardiomyocyte function. Finally, the biocompatibility of the PVDF scaffolds was studied in a cardiac environment, after implantation of acellular scaffolds on the surface of the heart of healthy mice. Seven and 28 days after implantation, no exuberant fibrosis and no multinucleated giant cells were visible in the grafted area, hence demonstrating the absence of foreign body reaction and the biocompatibility of these scaffolds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA