Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Death Dis ; 11(9): 721, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32883954

RESUMO

High-level expression of ASC (Apoptosis-associated speck-like protein containing a CARD) leads to lymph node metastasis in OSCC, but the underlying mechanism remains unclear. Here, we show that HIF-1α participates in ASC-induced metastasis. We identified 195 cell-motion-associated genes that were highly activated in ASC-overexpressed SAS_ASC cells; of them, 14 representative genes were found to be overexpressed in OSCC tissues in our previously reported RNA-seq dataset, OSCC-Taiwan. Nine of the 14 genes were also upregulated in OSCC-TCGA samples. Among the nine genes, RRAS2, PDGFA, and VEGFA, were correlated with poor overall survival of patients in OSCC-TCGA dataset. We further demonstrated that the promoters of these 14 ASC-induced genes contained binding motifs for the transcription-regulating factor, HIF-1α. We observed that ASC interacted with and stabilized HIF-1α in both the cytoplasm and the nucleus under normoxia. Molecules involved in the HIF-1α pathway, such as VHL and PHD2, showed no difference in their gene and protein levels in the presence or absence of ASC, but the expression of HIF-1α-OH, and the ubiquitination of HIF-1α were both decreased in SAS_ASC cells versus SAS_con cells. The migration and invasion activities of SAS_ASC cells were reduced when cells were treated with the HIF-1α synthesis inhibitor, digoxin. Taken together, our results demonstrate that the novel ASC-HIF-1α regulatory pathway contributes to lymph node metastasis in OSCC, potentially suggesting a new treatment strategy for OSCC.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Bucais/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Metástase Linfática , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Microambiente Tumoral , Regulação para Cima
2.
PLoS One ; 11(7): e0159599, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27454482

RESUMO

GlnR-mediated repression of the GlnR regulon at acidic pH is required for optimal acid tolerance in Streptococcus mutans, the etiologic agent for dental caries. Unlike most streptococci, the GlnR regulon is also regulated by newly identified PmrA (SMUGS5_RS05810) at the transcriptional level in S. mutans GS5. Results from gel mobility shift assays confirmed that both GlnR and PmrA recognized the putative GlnR box in the promoter regions of the GlnR regulon genes. By using a chemostat culture system, we found that PmrA activated the expression of the GlnR regulon at pH 7, and that this activation was enhanced by excess glucose. Deletion of pmrA (strain ΔPmrA) reduced the survival rate of S. mutans GS5 at pH 3 moderately, whereas the GlnR mutant (strain ΔGlnR) exhibited an acid-sensitive phenotype in the acid killing experiments. Elevated biofilm formation in both ΔGlnR and ΔPmrA mutant strains is likely a result of indirect regulation of the GlnR regulon since GlnR and PmrA regulate the regulon differently. Taken together, it is suggested that activation of the GlnR regulon by PmrA at pH 7 ensures adequate biosynthesis of amino acid precursor, whereas repression by GlnR at acidic pH allows greater ATP generation for acid tolerance. The tight regulation of the GlnR regulon in response to pH provides an advantage for S. mutans to better survive in its primary niche, the oral cavity.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Regulon/genética , Streptococcus mutans/genética , Streptococcus mutans/metabolismo , Proteínas de Bactérias/química , Sítios de Ligação , Biofilmes , Carboidratos , Concentração de Íons de Hidrogênio , Modelos Biológicos , Mutação , Ligação Proteica , Análise de Sequência de DNA , Transativadores/genética , Transativadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA