RESUMO
BACKGROUND: In endothelial cells, phospholipase C (PLC) ß1-activated Ca2+ is a crucial second messenger for the signaling pathways governing angiogenesis. PLCß1 is inactivated by complexing with an intracellular protein called translin-associated factor X (TRAX). This study demonstrates specific interactions between Globo H ceramide (GHCer) and TRAX, which highlight a new angiogenic control through PLCß1 activation. METHODS: Globo-series glycosphingolipids (GSLs), including GHCer and stage-specific embryonic antigen-3 ceramide (SSEA3Cer), were analyzed using enzyme-linked immunosorbent assay (ELISA) and Biacore for their binding with TRAX. Angiogenic activities of GSLs in human umbilical vein endothelial cells (HUVECs) were evaluated. Molecular dynamics (MD) simulation was used to study conformations of GSLs and their molecular interactions with TRAX. Fluorescence resonance energy transfer (FRET) analysis of HUVECs by confocal microscopy was used to validate the release of PLCß1 from TRAX. Furthermore, the in vivo angiogenic activity of extracellular vesicles (EVs) containing GHCer was confirmed using subcutaneous Matrigel plug assay in mice. RESULTS: The results of ELISA and Biacore analysis showed a stable complex between recombinant TRAX and synthetic GHCer with KD of 40.9 nM. In contrast, SSEA3Cer lacking a fucose residue of GHCer at the terminal showed ~ 1000-fold decrease in the binding affinity. These results were consistent with their angiogenic activities in HUVECs. The MD simulation indicated that TRAX interacted with the glycan moiety of GHCer at amino acid Q223, Q219, L142, S141, and E216. At equilibrium the stable complex maintained 4.6 ± 1.3 H-bonds. TRAX containing double mutations with Q223A and Q219A lost its ability to interact with GHCer in both MD simulation and Biacore assays. Removal of the terminal fucose from GHCer to become SSEA3Cer resulted in decreased H-bonding to 1.2 ± 1.0 by the MD simulation. Such specific H-bonding was due to the conformational alteration in the whole glycan which was affected by the presence or absence of the fucose moiety. In addition, ELISA, Biacore, and in-cell FRET assays confirmed the competition between GHCer and PLCß1 for binding to TRAX. Furthermore, the Matrigel plug assay showed robust vessel formation in the plug containing tumor-secreted EVs or synthetic GHCer, but not in the plug with SSEA3Cer. The FRET analysis also indicated the disruption of colocalization of TRAX and PLCß1 in cells by GHCer derived from EVs. CONCLUSIONS: Overall, the fucose residue in GHCer dictated the glycan conformation for its complexing with TRAX to release TRAX-sequestered PLCß1, leading to Ca2+ mobilization in endothelial cells and enhancing angiogenesis in tumor microenvironments.
Assuntos
Proteínas de Ligação a DNA , Fucose , Células Endoteliais da Veia Umbilical Humana , Animais , Humanos , Camundongos , Ceramidas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fucose/genética , Fucose/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Fosfolipase C beta/genética , Fosfolipase C beta/metabolismoRESUMO
Structural variants of α-galactosylceramide (α-GalCer) that stimulate invariant natural killer T (iNKT) cells constitute an emerging class of immunomodulatory agents in development for numerous biological applications. Variations in lipid chain length and/or fatty acids in these glycoceramides selectively trigger specific pro-inflammatory responses. Studies that would link a specific function to a structurally distinct α-GalCer rely heavily on the availability of homogeneous and pure materials. To address this need, we report herein a general route to the diversification of the ceramide portion of α-GalCer glycolipids. Our convergent synthesis commences from common building blocks and relies on the Julia-Kocienski olefination as a key step. A cleavable fluorous tag is introduced at the non-reducing end of the sugar that facilitates quick purification of products by standard fluorous solid-phase extraction. The strategy enabled the rapid generation of a focused library of 61 α-GalCer analogs by efficiently assembling various lipids and fatty acids. Furthermore, when compared against parent α-GalCer in murine cells, many of these glycolipid variants were found to have iNKT cell stimulating activity similar to or greater than KRN7000. ELISA assaying indicated that glycolipids carrying short fatty N-acyl chains (1fc and 1ga), an unsubstituted (1fh and 1fi) or CF3-substituted phenyl ring at the lipid tail, and a flexible, shorter fatty acyl chain with an aromatic ring (1ge, 1gf, and 1gg) strongly affected the activation of iNKT cells by the glycolipid-loaded antigen-presenting molecule, CD1d. This indicates that the method may benefit the design of structural modifications to potent iNKT cell-binding glycolipids.
Assuntos
Interleucina-2 , Células T Matadoras Naturais , Camundongos , Animais , Antígenos CD1d , Glicolipídeos/farmacologia , Ácidos GraxosRESUMO
BACKGROUND: Existence of breast cancer stem cells (BCSCs) is implicated in disease relapse, metastasis, and resistance of treatment. ß1,3-Galactosyltransferase 5 (B3GALT5) has been shown to be a pro-survival marker for BCSCs. However, little is known about the prognostic significance of B3GALT5 in breast cancer. METHODS: Paired tissues (tumor part and adjacent non-tumor part) from a cohort of 202 women with breast cancer were used to determine the expression levels of B3GALT5 mRNA by qRT-PCR. Kaplan-Meier and multivariable Cox proportional hazard models were used to assess survival differences in terms of relapse-free survival (RFS) and overall survival (OS). Both breast cancer cells and cancer stem cells (BCSCs) were used to see the in vitro effects of knockdown or overexpression of B3GALT5 on cell migration, invasion, and epithelial-to-mesenchymal transition (EMT). A patient-derived xenograft (PDX) model was used to see the in vivo effects of knockdown of B3GALT5 in BCSCs on tumor growth and metastasis. RESULTS: Higher expression of B3GALT5 in 202 breast cancer tissues, especially in adjacent non-tumor tissue, correlated with poor clinical outcomes including shorter OS and RFS in all patients, especially those with early stage breast cancer. In vitro studies showed B3GALT5 could enhance cell migration, invasion, mammosphere formation, and EMT. Of note, B3GALT5 upregulated the expression of ß-catenin and EMT activator zinc finger E-box binding homeobox 1 (ZEB1) pathway in BCSCs. In vivo studies showed B3GALT5 expression in BCSCs is critical for not only tumor growth but also lymph node and lung metastasis in PDX mice. CONCLUSION: Our results demonstrated the value of B3GALT5 as a prognostic marker of breast cancer, especially among the early stage patients, and its crucial roles in regulating EMT, cell migration, and stemness thereby promoting breast cancer progression.
Assuntos
Biomarcadores Tumorais , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Galactosiltransferases/genética , Expressão Gênica , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Modelos Animais de Doenças , Progressão da Doença , Transição Epitelial-Mesenquimal/genética , Feminino , Galactosiltransferases/metabolismo , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Metástase Neoplásica , Prognóstico , Modelos de Riscos Proporcionais , Interferência de RNARESUMO
ST3Gal1 is a key sialyltransferase which adds α2,3-linked sialic acid to substrates and generates core 1 O-glycan structure. Upregulation of ST3Gal1 has been associated with worse prognosis of breast cancer patients. However, the protein substrates of ST3Gal1 implicated in tumor progression remain elusive. In our study, we demonstrated that ST3GAL1-silencing significantly reduced tumor growth along with a notable decrease in vascularity of MCF7 xenograft tumors. We identified vasorin (VASN) which was shown to bind TGF-ß1, as a potential candidate that links ST3Gal1 to angiogenesis. LC-MS/MS analysis of VASN secreted from MCF7, revealed that more than 80% of its O-glycans are sialyl-3T and disialyl-T. ST3GAL1-silencing or desialylation of VASN by neuraminidase enhanced its binding to TGF-ß1 by 2- to 3-fold and thereby dampening TGF-ß1 signaling and angiogenesis, as indicated by impaired tube formation of HUVECs, suppressed angiogenesis gene expression and reduced activation of Smad2 and Smad3 in HUVEC cells. Examination of 114 fresh primary breast cancer and their adjacent normal tissues showed that the expression levels of ST3Gal1 and TGFB1 were high in tumor part and the expression of two genes was positively correlated. Kaplan Meier survival analysis showed a significantly shorter relapse-free survival for those with lower expression VASN, notably, the combination of low VASN with high ST3GAL1 yielded even higher risk of recurrence (p = 0.025, HR = 2.967, 95% CI = 1.14-7.67). Since TGF-ß1 is known to transcriptionally activate ST3Gal1, our findings illustrated a feedback regulatory loop in which TGF-ß1 upregulates ST3Gal1 to circumvent the negative impact of VASN.
Assuntos
Neoplasias da Mama/patologia , Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Recidiva Local de Neoplasia/patologia , Neovascularização Patológica/patologia , Sialiltransferases/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Mama/patologia , Neoplasias da Mama/irrigação sanguínea , Neoplasias da Mama/mortalidade , Progressão da Doença , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Células MCF-7 , Camundongos , Recidiva Local de Neoplasia/epidemiologia , RNA Interferente Pequeno/metabolismo , Ácidos Siálicos/metabolismo , Sialiltransferases/genética , Transdução de Sinais , Análise de Sobrevida , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto , beta-Galactosídeo alfa-2,3-SialiltransferaseRESUMO
Replacing the interglycosidic oxygen atom of oligosaccharides with a nonhydrolyzable sulfur atom has attracted significant interest because it provides opportunities for developing new glycoconjugate vaccines. Herein, a stereocontrolled and highly convergent method to synthesize a non-reducing-end inter-S-glycosidic variant of the GD3 antigen (S-linked α(2â8) GD3) that is resistant to enzymatic hydrolysis is reported. The key steps in the synthesis are a regio- and stereoselective α(2â3) sialylation of a lactoside acceptor with a C8-iodide-derivatized sialyl donor and an anomeric S-alkylation, which enable stereoselective construction of a terminal S-linked α(2â8) disialyl residue. The sulfhydryl-reactive maleimide group was used as the linker for the well-defined conjugation of these antigens to the immunogenic protein keyhole limpet hemocyanin (KLH). Groups of mice were immunized with the GD3-KLH and S-linked GD3-KLH glycoconjugates in the presence of complete Freund's adjuvant. Microarray analysis of the sera showed the promise of the S-linked GD3-KLH vaccine: it stimulated a high immunoglobulinâ G response against S-linked GD3 and cross-reactivity with the O-linked GD3 antigen was low. The activity of the S-linked GD3-KLH vaccine was comparable to that of the O-linked GD3-KLH vaccine, which highlighted the effectiveness of generating glycoconjugate vaccines and immunotherapies by relatively simple means.
Assuntos
Gangliosídeos/química , Glicoconjugados/química , Hemocianinas/química , Animais , Antígenos/química , Antígenos/imunologia , Glicoconjugados/síntese química , Glicoconjugados/imunologia , Glicoconjugados/metabolismo , Hemocianinas/imunologia , Imunização , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Maleimidas/química , Camundongos , Camundongos Endogâmicos BALB C , Neuraminidase/metabolismo , Compostos de Sulfidrila/química , Vacinas Sintéticas/imunologia , Vibrio cholerae/enzimologiaRESUMO
Natural killer T (NKT) cell is a distinct population of T lymphocytes that can rapidly release massive amount of Th1 and Th2 cytokines upon the engagement of their T cell receptor with glycolipids presented by CD1d. The secreted cytokines can promote cell-mediated immunity to kill tumor cells and intracellular pathogens, or suppress autoreactive immune cells in autoimmune diseases. Thus, NKT cell is an attractive target for developing new therapeutics to manipulate immune system. The best-known glycolipid to activate NKT cells is α-galactosylceramide (α-GalCer), which has been used as a prototype for designing new NKT stimulatory glycolipids. Many analogues have been generated by modification of the galactosyl moiety, the acyl chain or the phytosphingosine chain of α-GalCer. Some of the analogues showed greater abilities than α-GalCer in polarizing immune responses toward Th1 or Th2 dominance. Among them, several analogues containing phenyl groups in the lipid tails were more potent in inducing Th1-skewed cytokines and exhibited greater anticancer efficacy than α-GalCer. Analyses of the correlation between structure and activity of various α-GalCer analogues on the activation of iNKT cell revealed that CD1d-glycolipid complexes interacted with the same population of iNKT cell expressing similar T-cell receptor Vß as α-GalCer. On the other hand, those phenyl glycolipids with propensity for Th1 dominant responses showed greater binding avidity and stability than α-GalCer for iNKT T-cell receptor when complexed with CD1d. Thus, it is the avidity and stability of the ternary complexes of CD1d-glycolipid-iNKT TCR that dictate the polarity and potency of immune responses. These findings provide a key to the rationale design of immune modulating glycolipids with desirable Th1/Th2 polarity for clinical application. In addition, elucidation of α-GalCer-induced anergy, liver damage and accumulation of myeloid derived suppressor cells has offered explanation for its lacklustre anti-cancer activities in clinical trials. On other hand, the lack of such drawbacks in glycolipid analogues containing phenyl groups in the lipid tails of α-GalCer coupled with the greater binding avidity and stability of CD1d-glycolipid complex for iNKT T-cell receptor, account for their superior anti-cancer efficacy in tumor bearing mice. Further clinical development of these phenyl glycolipids is warranted.
Assuntos
Galactosilceramidas/imunologia , Imunidade Celular , Ativação Linfocitária/imunologia , Células T Matadoras Naturais/imunologia , Animais , Humanos , CamundongosRESUMO
Strategies for cancer immunotherapy include activating immune system for therapeutic benefit or blockade of immune checkpoints. To harness innate immunity to fight cancer, α-galactosylceramide (α-GalCer) has been used to activate NKT cells. Unfortunately, administration of α-GalCer causes long-term NKT cell anergy, but the molecular mechanism is unclear. In this study, we showed that α-GalCer-triggered egr2/3, which induced programmed death 1 and cbl-b in NKT cells, leading to NKT cell anergy. We also uncovered the induction of the immunosuppressive myeloid-derived suppressor cells (MDSCs) in the spleen by α-GalCer that might attenuate its antitumor efficacy. The accumulation of MDSC was accompanied by 20-fold rise in their arg-1 mRNAs and enhanced expression of programmed death 1/programmed death ligand 1. Furthermore, α-GalCer-induced egr-2/3 in hepatic NKT cells upregulated their TRAIL in addition to Fas ligand (FasL) and induced alarm signaling molecule IL-33 in Kupffer cells, presumably because of liver damage triggered by TRAIL/FasL. We further demonstrated that IL-33-stimulated macrophages produce G-CSF, which in turn, boosted MDSCs. Thus, α-GalCer-induced FasL/TRAIL and IL-33 provided a novel mechanism underlying α-GalCer-induced hepatotoxicity and MDSC accumulation. In contrast, analogs of α-GalCer containing phenyl group in the lipid tail could neither induce NKT anergy nor enhance MDSCs accumulation. Furthermore, tumor-infiltrating MDSCs in mice injected repeatedly with α-GalCer were 2-fold higher than those treated with phenyl-glycolipids. These results not only revealed the induction of MDSC via IL-33 as a new mechanism for α-GalCer-elicited immunosuppression but also provided one of the mechanisms underlying the superior antitumor potency of phenyl-glycolipids. Our findings have important implications for the development of NKT-stimulatory glycolipids as vaccine adjuvants and anticancer therapeutics.
Assuntos
Antígeno B7-H1/metabolismo , Galactosilceramidas/imunologia , Células Mieloides/imunologia , Células T Matadoras Naturais/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Animais , Antineoplásicos/metabolismo , Antineoplásicos/uso terapêutico , Arginase/genética , Antígeno B7-H1/biossíntese , Linhagem Celular Tumoral , Anergia Clonal/imunologia , Proteína 2 de Resposta de Crescimento Precoce/biossíntese , Proteína 3 de Resposta de Crescimento Precoce/biossíntese , Proteína Ligante Fas/biossíntese , Feminino , Galactosilceramidas/uso terapêutico , Fator Estimulador de Colônias de Granulócitos/biossíntese , Fator Estimulador de Colônias de Granulócitos/metabolismo , Terapia de Imunossupressão , Imunoterapia , Interleucina-33 , Interleucinas/metabolismo , Células de Kupffer/metabolismo , Ativação Linfocitária/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/citologia , Células T Matadoras Naturais/imunologia , Receptor de Morte Celular Programada 1/biossíntese , Proteínas Proto-Oncogênicas c-cbl/biossíntese , RNA Mensageiro/biossíntese , Baço/imunologia , Ligante Indutor de Apoptose Relacionado a TNF/biossíntese , Regulação para CimaRESUMO
Globo H (GH) is a hexasaccharide specifically overexpressed on a variety of cancer cells and therefore, a good candidate for cancer vaccine development. To identify the optimal carrier and adjuvant combination, we chemically synthesized and linked GH to a carrier protein, including keyhole limpet hemocyanion, diphtheria toxoid cross-reactive material (CRM) 197 (DT), tetanus toxoid, and BSA, and combined with an adjuvant, and it was administered to mice for the study of immune response. Glycan microarray analysis of the antiserum obtained indicated that the combination of GH-DT adjuvanted with the α-galactosylceramide C34 has the highest enhancement of anti-GH IgG. Compared with the phase III clinical trial vaccine, GH-keyhole limpet hemocyanion/QS21, the GH-DT/C34 vaccine elicited more IgG antibodies, which are more selective for GH and the GH-related epitopes, stage-specific embryonic antigen 3 (SSEA3) and SSEA4, all of which were specifically overexpressed on breast cancer cells and breast cancer stem cells with SSEA4 at the highest level (>90%). We, therefore, further developed SSEA4-DT/C34 as a vaccine candidate, and after immunization, it was found that the elicited antibodies are also IgG-dominant and very specific for SSEA4.
Assuntos
Antígenos Glicosídicos Associados a Tumores/farmacologia , Proteínas de Bactérias/imunologia , Neoplasias da Mama/prevenção & controle , Vacinas Anticâncer/química , Antígenos Embrionários Estágio-Específicos/imunologia , Animais , Antígenos Glicosídicos Associados a Tumores/administração & dosagem , Antígenos Glicosídicos Associados a Tumores/química , Antígenos Glicosídicos Associados a Tumores/imunologia , Neoplasias da Mama/imunologia , Feminino , Citometria de Fluxo , Hemocianinas , Soros Imunes/análise , Imunoglobulina G/imunologia , Camundongos , Análise em Microsséries , Estrutura Molecular , Células-Tronco Neoplásicas/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Toxoide TetânicoRESUMO
INTRODUCTION: Although breast phyllodes tumors are rare, there is no effective therapy other than surgery. Little is known about their tumor biology. A malignant phyllodes tumor contains heterologous stromal elements, and can transform into rhabdomyosarcoma, liposarcoma and osteosarcoma. These versatile properties prompted us to explore their possible relationship to mesenchymal stem cells (MSCs) and to search for the presence of cancer stem cells (CSCs) in phyllodes tumors. METHODS: Paraffin sections of malignant phyllodes tumors were examined for various markers by immunohistochemical staining. Xenografts of human primary phyllodes tumors were established by injecting freshly isolated tumor cells into the mammary fat pad of non-obese diabetic-severe combined immunodeficient (NOD-SCID) mice. To search for CSCs, xenografted tumor cells were sorted into various subpopulations by flow cytometry and examined for their in vitro mammosphere forming capacity, in vivo tumorigenicity in NOD-SCID mice and their ability to undergo differentiation. RESULTS: Immunohistochemical analysis revealed the expression of the following 10 markers: CD44, CD29, CD106, CD166, CD105, CD90, disialoganglioside (GD2), CD117, Aldehyde dehydrogenase 1 (ALDH), and Oct-4, and 7 clinically relevant markers (CD10, CD34, p53, p63, Ki-67, Bcl-2, vimentin, and Globo H) in all 51 malignant phyllodes tumors examined, albeit to different extents. Four xenografts were successfully established from human primary phyllodes tumors. In vitro, ALDH+ cells sorted from xenografts displayed approximately 10-fold greater mammosphere-forming capacity than ALDH- cells. GD2+ cells showed a 3.9-fold greater capacity than GD2- cells. ALDH+/GD2+cells displayed 12.8-fold greater mammosphere forming ability than ALDH-/GD2- cells. In vivo, the tumor-initiating frequency of ALDH+/GD2+ cells were up to 33-fold higher than that of ALDH+ cells, with as few as 50 ALDH+/GD2+ cells being sufficient for engraftment. Moreover, we provided the first evidence for the induction of ALDH+/GD2+ cells to differentiate into neural cells of various lineages, along with the observation of neural differentiation in clinical specimens and xenografts of malignant phyllodes tumors. ALDH+ or ALDH+/GD2+ cells could also be induced to differentiate into adipocytes, osteocytes or chondrocytes. CONCLUSIONS: Our findings revealed that malignant phyllodes tumors possessed many characteristics of MSC, and their CSCs were enriched in ALDH+ and ALDH+/GD2+ subpopulations.
Assuntos
Aldeído Desidrogenase/metabolismo , Neoplasias da Mama/metabolismo , Gangliosídeos/metabolismo , Células-Tronco Neoplásicas/metabolismo , Tumor Filoide/metabolismo , Adipócitos/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/classificação , Neoplasias da Mama/patologia , Diferenciação Celular , Condrócitos/metabolismo , Feminino , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Camundongos Endogâmicos NOD , Camundongos SCID , Microscopia Confocal , Células-Tronco Neoplásicas/patologia , Neurônios/metabolismo , Osteócitos/metabolismo , Tumor Filoide/classificação , Tumor Filoide/patologia , Transplante Heterólogo , Células Tumorais CultivadasRESUMO
Invariant natural killer T cell (iNKT) cells produce large amounts of cytokines in response to α-Galactosylceramide (α-GalCer) stimulation. An analog containing two phenyl rings on the acyl chain, C34, was previously found to be more Th1-biased than α-GalCer and triggered greater anticancer activities against breast cancer, melanoma and lung cancer in mice. Since liver is enriched in iNKT cells, we investigated anticancer efficacy of C34 on neuroblastoma with hepatic metastasis. C34 induced Th1-biased cytokine secretions in the liver, significantly suppressed neuroblastoma growth/metastasis and prolonged mouse survival. The anti-tumor efficacy might be attributed to greater expansions of hepatic NKT, NK, CD4+ T, and CD8+ T cells as well as reduction of the number of SSCloGr1intCD11b+ subset of myeloid-derived suppressor cells (MDSCs) in the liver of tumor-bearing mice, as compared to DMSO control group. C34 also upregulated expression of CD1d and CD11c, especially in the SSCloGr1intCD11b+ subset of MDSCs, which might be killed by C34-activated NKT cells, attributing to their reduced number. In addition, C34 also induced expansion of CD4+ T, CD8+ T, and NK cells, which might eliminate neuroblastoma cells. These immune-modulating effects of C34 might act in concert in the local milieu of liver to suppress the tumor growth. Further analysis of database of neuroblastoma revealed that patients with high CD11c expression in the monocytic MDSCs in the tumor had longer survival, suggesting the potential clinical application of C34 for treatment of neuroblastoma.
Assuntos
Glicolipídeos , Neoplasias Hepáticas , Células T Matadoras Naturais , Neuroblastoma , Animais , Neuroblastoma/patologia , Neuroblastoma/tratamento farmacológico , Neuroblastoma/imunologia , Células T Matadoras Naturais/efeitos dos fármacos , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/secundário , Linhagem Celular Tumoral , Camundongos , Glicolipídeos/farmacologia , Humanos , Feminino , Citocinas/metabolismo , Células Supressoras Mieloides/efeitos dos fármacos , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Antineoplásicos/farmacologia , Galactosilceramidas/farmacologiaRESUMO
In recent studies, there has been growing interest in developing cancer therapeutics targeting Globo H ceramide, which is considered as the most prevalent tumor-associated carbohydrate antigen in epithelial cancers. In this study, we aimed to evaluate the expression of Globo H and investigate its prognostic significance in gallbladder cancer (GBC). The tumor specimens and clinical characteristics of GBC patients were collected from the tumor bank and database of Chang Gung Memorial Hospital. Globo H in tumor specimens was detected by immunohistochemistry (IHC) and mass spectrometry analysis. Through data mining, it was discovered that FUT1 and FUT2, which are key enzymes involved in the biosynthesis of Globo H, were significantly up-regulated in human gallbladder cancer (GBC). Consistent with this finding, Globo H expression was detected in 86% (128 out of 149) of GBC specimens using immunohistochemical (IHC) staining. This was the highest frequency among Globo H expressing cancers. Patients with tumors exhibiting higher Globo H expression (H-score ≥ 80) demonstrated significantly shorter disease-free survival (DFS) and overall survival (OS) (P = 0.0001 and P = 0.0004, respectively). In a multivariable Cox regression analysis, elevated Globo H expression was identified as an independent unfavorable predictor for DFS and OS (hazard ratio: 2.29 and 2.32, respectively, P = 0.008 and 0.001) in primary GBC. Globo H is an independent prognostic marker for GBC.
RESUMO
BACKGROUND: Malignant cells may arise from dedifferentiation of mature cells and acquire features of the progenitor cells. Definitive endoderm from which liver is derived, expresses glycosphingolipids (GSLs) such as stage-specific embryonic antigen 3 (SSEA3), Globo H, and stage-specific embryonic antigen 4 (SSEA4). Herein, we evaluated the potential prognosis value of the three GSLs and biological functions of SSEA3 in hepatocellular carcinoma (HCC). METHODS: The expression of SSEA3, Globo H, and SSEA4 in tumor tissues obtained from 328 patients with resectable HCC was examined by immunohistochemistry staining. Epithelial mesenchymal transition (EMT) and their related genes were analyzed by transwell assay and qRT-PCR, respectively. RESULTS: Kaplan Meier survival analysis showed significantly shorter relapse-free survival (RFS) for those with higher expression of SSEA3 (p < 0.001), Globo H (p < 0.001), and SSEA4 (p = 0.005) and worse overall survival (OS) for those with high expression of either SSEA3 (p < 0.001) or SSEA4 (p = 0.01). Furthermore, multivariable Cox regression analysis identified the SSEA3 as an independent predictor for RFS (HR: 2.68, 95% CI: 1.93-3.72, p < 0.001) and OS (HR: 2.99, 95% CI: 1.81-4.96, p < 0.001) in HCC. Additionally, SSEA3-ceramide enhanced the EMT of HCC cells, as reflected by its ability to increase migration, invasion and upregulate the expression of CDH2, vimentin, fibronectin, and MMP2, along with ZEB1. Moreover, ZEB1 silencing abrogated the EMT-enhancing effects of SSEA3-ceramide. CONCLUSIONS: Higher expression of SSEA3 was an independent predictor for RFS and OS in HCC and promoted EMT of HCC via upregulation of ZEB1.
RESUMO
Glycosphingolipids (GSLs) display diverse functions during embryonic development. Here, we examined the GSL profiles of extracellular vesicles (EVs) secreted from human embryonic stem cells (hESCs) and investigated their functions in priming macrophages to enhance immune tolerance of embryo implantation. When peripheral blood mononuclear cells were incubated with ESC-secreted EVs, globo-series GSLs (GHCer, SSEA3Cer, and SSEA4Cer) were transferred via EVs into monocytes/macrophages. Incubation of monocytes during their differentiation into macrophages with either EVs or synthetic globo-series GSLs induced macrophages to exhibit phenotypic features that imitate immune receptivity, i.e., macrophage polarization, augmented phagocytic activity, suppression of T cell proliferation, and the increased trophoblast invasion. It was also demonstrated that decidual macrophages in first-trimester tissues expressed globo-series GSLs. These findings highlight the role of globo-series GSLs via transfer from EVs in priming macrophages to display decidual macrophage phenotypes, which may facilitate healthy pregnancy.
Assuntos
Glicoesfingolipídeos , Leucócitos Mononucleares , Gravidez , Feminino , Humanos , Macrófagos , Diferenciação Celular , Tolerância ImunológicaRESUMO
BACKGROUND: In the Children's Oncology Group ANBL1221 phase 2 trial for patients with first relapse/first declaration of refractory high-risk neuroblastoma, irinotecan and temozolomide (I/T) combined with either temsirolimus (TEMS) or immunotherapy (the anti-GD2 antibody dinutuximab (DIN) and granulocyte macrophage colony stimulating factory (GM-CSF)) was administered. The response rate among patients treated with I/T/DIN/GM-CSF in the initial cohort (n=17) was 53%; additional patients were enrolled to permit further evaluation of this chemoimmunotherapy regimen. Potential associations between immune-related biomarkers and clinical outcomes including response and survival were evaluated. METHODS: Patients were evaluated for specific immunogenotypes that influence natural killer (NK) cell activity, including killer immunoglobulin-like receptors (KIRs) and their ligands, Fc gamma receptors, and NCR3. Total white cells and leucocyte subsets were assessed via complete blood counts, and flow cytometry of peripheral blood mononuclear cells was performed to assess the potential association between immune cell subpopulations and surface marker expression and clinical outcomes. Appropriate statistical tests of association were performed. The Bonferroni correction for multiple comparisons was performed where indicated. RESULTS: Of the immunogenotypes assessed, the presence or absence of certain KIR and their ligands was associated with clinical outcomes in patients treated with chemoimmunotherapy rather than I/T/TEMS. While median values of CD161, CD56, and KIR differed in responders and non-responders, statistical significance was not maintained in logistic regression models. White cell and neutrophil counts were associated with differences in survival outcomes, however, increases in risk of event in patients assigned to chemoimmunotherapy were not clinically significant. CONCLUSIONS: These findings are consistent with those of prior studies showing that KIR/KIR-ligand genotypes are associated with clinical outcomes following anti-GD2 immunotherapy in children with neuroblastoma. The current study confirms the importance of KIR/KIR-ligand genotype in the context of I/T/DIN/GM-CSF chemoimmunotherapy administered to patients with relapsed or refractory disease in a clinical trial. These results are important because this regimen is now widely used for treatment of patients at time of first relapse/first declaration of refractory disease. Efforts to assess the role of NK cells and genes that influence their function in response to immunotherapy are ongoing. TRIAL REGISTRATION NUMBER: NCT01767194.
Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos , Neuroblastoma , Humanos , Criança , Ligantes , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Leucócitos Mononucleares , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Genótipo , Receptores KIR/genética , Antígenos de Histocompatibilidade , Irinotecano/uso terapêutico , Imunoterapia , RecidivaRESUMO
α-GalCer is an immunostimulating glycolipid that binds to CD1d molecules and activates invariant natural killer T (iNKT) cells. Here we report a scaled-up synthesis of α-GalCer analogues with modifications in the acyl side chain and/or at the galactose 6''-position, together with their evaluation in vitro and in vivo. Analogues containing 11-phenylundecanoyl acyl side chains with aromatic substitutions (14, 16-21) and Gal-6''-phenylacetamide-substituted α-GalCer analogues bearing p-nitro- (32), p-tert-butyl (34), or o-, m-, or p-methyl groups (40-42) displayed higher IFN-γ/IL-4 secretion ratios than α-GalCer in vitro. In mice, compound 16, with an 11-(3,4-difluorophenyl)undecanoyl acyl chain, induced significant proliferation of NK and DC cells, which should be beneficial in killing tumors and priming the immune response. These new glycolipids might prove useful as adjuvants or anticancer agents.
Assuntos
Antineoplásicos/farmacologia , Galactosilceramidas/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Células T Matadoras Naturais/efeitos dos fármacos , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Galactosilceramidas/síntese química , Galactosilceramidas/química , Camundongos , Camundongos Endogâmicos C57BL , Conformação Molecular , Células T Matadoras Naturais/citologia , Células T Matadoras Naturais/imunologia , Estereoisomerismo , Relação Estrutura-AtividadeRESUMO
Previously, we identified Puf-A as a novel member of Puf-family RNA-binding proteins; however, its biological functions remain obscure. Analysis of tumor samples of non-small cell lung cancer (NSCLC) showed that high Puf-A expression correlated with high histology grade and abnormal p53 status. Kaplan-Meier curve for overall survival revealed high expression of Puf-A to predict poor prognosis in stage I NSCLC. Among patients with colorectal cancer, high Puf-A expression also showed an adverse impact on overall survival. In lung cancer cell lines, downregulation of p53 increased Puf-A expression, and upregulation of p53 dampened its expression. However, luciferase reporter assays indicated that PUF-A locus harbored the p53-response element, but regulated Puf-A transcription indirectly. In vivo suppression of p53 in CCSP-rtTA/TetO-Cre/LSL-KrasG12D/p53flox/flox conditional mutant mice accelerated the progression of the KrasG12D-driven lung cancer, along with enhanced expression of Puf-A. Importantly, intranasal delivery of shPuf-A to the inducible KrasG12D/p53flox/flox mice suppressed tumor progression. Puf-A silencing led to marked decreases in the 80S ribosomes, along with decrease in S6 and L5 in the cytoplasm and accumulation in the nucleolus. Based on immunofluorescence staining and immunoprecipitation studies, Puf-A interacted with NPM1 in nucleolus. Puf-A silencing resulted in NPM1 translocation from nucleolus to nucleoplasm and this disruption of NPM1 localization was reversed by a rescue experiment. Mechanistically, Puf-A silencing altered NPM1 localization, leading to the retention of ribosomal proteins in nucleolus and diminished ribosome biogenesis, followed by cell-cycle arrest/cell death. Puf-A is a potential theranostic target for cancer therapy and an important player in cancer progression.
Assuntos
Carcinoma Pulmonar de Células não PequenasRESUMO
An international randomized phase II trial of Globo H (GH) vaccine, adagloxad simolenin/OBI-821 in 349 patients with metastatic breast cancer showed longer progression-free survival (PFS) in vaccinated patients who developed anti-Globo H (anti-GH) IgG than those who did not and the placebo group. The impacts of anti-GH IgM and GH expression on peak anti-GH IgG and clinical outcome were further evaluated. The titers of anti-GH IgG and IgM were determined by ELISA. GH expression in tumor was examined by immunohistochemical staining. Immunophenotyping was conducted by flow cytometry. Adagloxad simolenin elicited anti-GH IgM which peaked at titers ≥1:80 between weeks 5 and 13. The mean anti-GH IgG titer peaked at week 41 and decreased thereafter on the completion of vaccination. One log increase in peak IgM was associated with 10.6% decrease in the HR of disease progression (HR: 0.894, 95% CI: 0.833 to 0.960, p=0.0019). Patients with anti-GH IgM ≥1:320 within first 4 weeks after vaccination had significantly higher maximum anti-GH IgM (p<0.0001) and IgG titers (p<0.0001) than those with <1:320. Moreover, the median PFS appears to be longer for patients with anti-GH IgM ≥1:320 within first 4 weeks than those with anti-GH IgM titer <1:320 (11.1 vs 7.3 months, p=0.164), but not statistically significant. Among patients with H score ≥80 for GH expression by immunohistochemistry, the vaccination group (n=42) seemed to have better PFS than the placebo group (n=23) (HR=0.59; 95% CI: 0.32 to 1.10, p=0.10), but the difference did not reach statistical significance. In addition, peak levels of anti-GH IgM were higher in patients who had lower percentage of activated regulatory T cells (Treg cells; CD4+CD45RA-Foxp3high) at baseline than those who had higher activated Treg cells (p=0.042). This study demonstrates that adagloxad simolenin induced both IgG and IgM antibodies against GH. Anti-GH IgM ≥1:320 within first 4 weeks or low activated Treg cells at baseline may help to select patients who are likely to produce a higher level of GH-specific IgM and IgG in the future.
Assuntos
Neoplasias da Mama , Adjuvantes Imunológicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Vacinas Anticâncer , Feminino , Hemocianinas/uso terapêutico , Humanos , Imunidade Humoral , Imunoglobulina G , Imunoglobulina M , Vacinas ConjugadasRESUMO
Glycosphingolipids (GSLs) play essential roles in many important biological processes, making them attractive synthetic targets. In this paper, a viable chemoenzymatic method is described for the synthesis of globo-series GSLs, namely, Gb4, Gb5, SSEA-4, and Globo H. The strategy uses a chemically synthesized lactoside acceptor equipped with a partial ceramide structure that is uniquely extended by glycosyltransferases in a highly efficient one-pot multiple enzyme (OPME) procedure. A direct and quantitative conversion of Gb4 sphingosine to Globo H sphingosine is achieved by performing two-sequential OPME glycosylations. A reduction and N-acylation protocol allows facile incorporation of various fatty acids into the lipid portions of the GSLs. The chemically well-defined lipid-modified Globo H-GSLs displayed some differences in their immunosuppressive activities, which may benefit the structural modifications of Globo H ceramides in finding new types of immunosuppressive agents. The strategy outlined in this work should be applicable to the rapid access to other complex GSLs.
Assuntos
Glicoesfingolipídeos , Esfingosina , Glicoesfingolipídeos/química , Glicoesfingolipídeos/metabolismo , Imunossupressores/farmacologiaRESUMO
Recent studies support the development of cancer therapeutics to target Globo H-ceramide, the most prevalent tumor-associated carbohydrate antigen in epithelial cancers. Herein, we evaluated the expression of Globo H and its prognostic significance in intrahepatic cholangiocarcinoma (ICC) and conducted preclinical studies to assess the antitumor activity of Globo H-specific antibody in thioacetamide (TAA)-induced ICC in rats. Globo H-ceramide in tumor specimens was detected by immunohistochemistry (IHC) and mass spectrometry. Antitumor efficacy of anti-Globo H mAbVK9 was evaluated in TAA-induced ICC in rat. Natural killer (NK) cells and their related genes were analyzed by IHC and quantitative real-time polymerase chain reaction. Data mining revealed that B3GALT5 and FUT2, the key enzymes for Globo H biosynthesis, were significantly up-regulated in human ICC. In addition, Globo H expression was detected in 41% (63 of 155) of ICC tumor specimens by IHC staining, and validated by mass spectrometric analysis of two IHC-positive tumors. Patients with Globo H positive tumors had significantly shorter relapse-free survival (RFS) and overall survival (P = 0.0003 and P = 0.002, respectively). Multivariable Cox regression analysis identified Globo H expression as an independent unfavorable predictor for RFS (hazard ratio: 1.66, 95% confidence interval: 1.08-2.36, P = 0.02) in ICC. Furthermore, gradual emergence of Globo H in liver tissues over 6 months in TAA-treated rats recapitulated the multistage progression of ICC in vivo. Importantly, administration of anti-Globo H mAbVK9 in rats bearing TAA-induced ICC significantly suppressed tumor growth with increased NK cells in the tumor microenvironment. Conclusion: Globo H is a theranostic marker in ICC.
Assuntos
Antígenos Glicosídicos Associados a Tumores/análise , Neoplasias dos Ductos Biliares/metabolismo , Colangiocarcinoma/metabolismo , Animais , Anticorpos Monoclonais/uso terapêutico , Antígenos Glicosídicos Associados a Tumores/imunologia , Neoplasias dos Ductos Biliares/tratamento farmacológico , Colangiocarcinoma/tratamento farmacológico , Modelos Animais de Doenças , Humanos , Masculino , Prognóstico , Ratos Sprague-Dawley , Fatores de RiscoRESUMO
Cancer-associated carbohydrate antigens are often found on the surface of cancer cells. Understanding their roles in cancer progression will lead to the development of new therapeutics and high-sensitivity diagnostics for cancers. Globo H is a member of this family, which is highly expressed on breast cancer cells. Here, we report the development of a glycan microarray of Globo H and its analogs for measurement of the dissociation constants on surface (K(D,surf)) with three different monoclonal antibodies (VK-9, Mbr1, and anti-SSEA-3), to deduce their binding specificity. The glycan microarray was also used to detect the amount of antibodies present in the plasma of breast cancer patients and normal blood donors. It was shown that the amount of antibodies against Globo H from breast cancer patients were significantly higher than normal blood donors, providing a new tool for possible breast cancer diagnosis. Compared with the traditional ELISA method, this array method required only atto-mole amounts of materials and is more effective and more sensitive (5 orders of magnitude). The glycan microarray thus provides a new platform for use to monitor the immune response to carbohydrate epitopes after vaccine therapy or during the course of cancer progression.