RESUMO
Borexino is a liquid scintillation detector located deep underground at the Laboratori Nazionali del Gran Sasso (LNGS, Italy). Thanks to the unmatched radio purity of the scintillator, and to the well understood detector response at low energy, a new limit on the stability of the electron for decay into a neutrino and a single monoenergetic photon was obtained. This new bound, τ≥6.6×10^{28} yr at 90% C.L., is 2 orders of magnitude better than the previous limit.
RESUMO
New Jefferson Lab data are presented on the nuclear dependence of the inclusive cross section from (2)H, (3)He, (4)He, (9)Be and (12)C for 0.3 < x < 0.9, Q(2) approximately 3-6 GeV(2). These data represent the first measurement of the EMC effect for (3)He at large x and a significant improvement for (4)He. The data do not support previous A-dependent or density-dependent fits to the EMC effect and suggest that the nuclear dependence of the quark distributions may depend on the local nuclear environment.
RESUMO
Procedures and instrumentation are described to extend the capability of a cytometry system to record samples that exhibit a wide range of fluorescence such as multicellular systems. The method employs a log amplifier in combination with a set of neutral density filters that reduces the incident light reaching the photomultiplier tube. With any given filter, signals within an intensity range of 200-fold can be measured; different filters can be used to obtain an extended overall range. Polystyrene fluorescent microspheres and a variety of mithramycin stained biological samples ranging from yeast cells to Paramecium were processed by the system. The relative DNA content of individual multicellular embryos was determined for a heterogeneous population of embryonic stages isolated from the nematode, Caenorhabditis elegans. As part of the evaluation of the procedure, the practical upper limit of range extension was determined. The most intense fluorescent signal was produced when untreated pecan pollen stained with ethidium bromide fluoresced with a factor (8.4 +/- 1.3) X 10(4) more than ethidium bromide stained E. coli cells.
Assuntos
Técnicas Citológicas , DNA/análise , Ambystoma , Animais , Caenorhabditis/análise , Caenorhabditis/embriologia , Galinhas , Técnicas Citológicas/instrumentação , Camundongos , Paramecium/análise , Pólen/análise , Espectrometria de Fluorescência , Triturus , Xenopus laevisRESUMO
Nuclear emulsions were used to provide information on (1) the pion star distribution for a therapy beam; (2) star production as a function of pion energy and residual range in nuclear emulsion; (3) the distribution of nuclear framgent ranges in emulsion; and (4) the neutron energy spectrum and fluence produced by negative pion capture in tissue, during treatment of a patient. This last item is important for determining the whole-body dose delivered to a patient undergoing pion radiotherapy.
Assuntos
Radioterapia de Alta Energia , Partículas Elementares , Emulsões , Humanos , Melanoma/radioterapia , Neoplasias Cutâneas/radioterapiaRESUMO
A large data set of charged-pion (pi+/-) electroproduction from both hydrogen and deuterium targets has been obtained spanning the low-energy residual-mass region. These data conclusively show the onset of the quark-hadron duality phenomenon, as predicted for high-energy hadron electroproduction. We construct several ratios from these data to exhibit the relation of this phenomenon to the high-energy factorization ansatz of electron-quark scattering and subsequent quark-->pion production mechanisms.
RESUMO
The applicability of flow-microfluorometer to separate microbial cells was demonstrated with algal and bacterial cells. Algal mixtures were sorted according to the natural chlorophyll fluorescence and the bacterial mixtures were sorted according to the fluorescence of ethidium bromide-stained nucleic acid.
Assuntos
Bactérias/isolamento & purificação , Eucariotos/isolamento & purificação , Fluorometria/métodos , Bacillus subtilis/análise , Bacillus subtilis/isolamento & purificação , Clorofila/análise , Etídio , Eucariotos/análise , Fluorescência , Ácidos Nucleicos/análise , Rhizobium/análise , Rhizobium/isolamento & purificaçãoRESUMO
High-energy, cw electron beams at new accelerator facilities allow electromagnetic production and precision study of hypernuclear structure, and we report here on the first experiment demonstrating the potential of the (e,e'K+) reaction for hypernuclear spectroscopy. This experiment is also the first to take advantage of the enhanced virtual photon flux available when electrons are scattered at approximately zero degrees. The observed energy resolution was found to be approximately 900 keV for the (12)(Lambda)B spectrum, and is substantially better than any previous hypernuclear experiment using magnetic spectrometers. The positions of the major excitations are found to be in agreement with a theoretical prediction and with a previous binding energy measurement, but additional structure is also observed in the core excited region, underlining the future promise of this technique.