Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 167: 107358, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34774764

RESUMO

Apicomplexa is a large monophyletic phylum of unicellular, parasitic organisms. Reptiles are hosts to both haemosporidian (Haemosporida) and hemogregarine (Eucoccidiorida) apicomplexan blood parasites. Within reptiles our understanding of their diversity remains limited, with a paucity of information from Australia, despite a high diversity of squamates (snakes and lizards). We provide a preliminary assessment of haemosporidian and hemogregarine diversity occurring in lizards across northern tropical Australia, building on existing data with results from a microscopy and genetic assessment. We screened total of 233 blood slides using microscopy and detected hemogregarines in 25 geckos, 2 skinks and 1 agamid, while haemosporidians were detected in 13 geckos. DNA sequencing of 28 samples of the hemogregarine 18S rRNA (∼900 bp) nuclear gene revealed five lineages of Australian lizard hemogregarines within heteroxenous adeleids. We sequenced 10 samples of Haemosporida mtDNA (cytb & coI: ∼1313 bp) and phylogenetic analysis with 30 previously published sequences revealed that the Australian Haemosporida grouped within the Haemoproteidae but were not supported as a monophyletic clade. Our results demonstrate that there is significant undocumented evolutionary diversity in Australian lizard haemosporidian and hemogregarine parasites, with preliminary evidence of significantly higher infection rates in geckos.


Assuntos
Haemosporida , Lagartos , Parasitos , Animais , Austrália , Haemosporida/genética , Lagartos/genética , Filogenia
2.
Mol Biol Evol ; 33(1): 281-94, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26474846

RESUMO

Exon-capture studies have typically been restricted to relatively shallow phylogenetic scales due primarily to hybridization constraints. Here, we present an exon-capture system for an entire class of marine invertebrates, the Ophiuroidea, built upon a phylogenetically diverse transcriptome foundation. The system captures approximately 90% of the 1,552 exon target, across all major lineages of the quarter-billion-year-old extant crown group. Key features of our system are 1) basing the target on an alignment of orthologous genes determined from 52 transcriptomes spanning the phylogenetic diversity and trimmed to remove anything difficult to capture, map, or align; 2) use of multiple artificial representatives based on ancestral state reconstructions rather than exemplars to improve capture and mapping of the target; 3) mapping reads to a multi-reference alignment; and 4) using patterns of site polymorphism to distinguish among paralogy, polyploidy, allelic differences, and sample contamination. The resulting data give a well-resolved tree (currently standing at 417 samples, 275,352 sites, 91% data-complete) that will transform our understanding of ophiuroid evolution and biogeography.


Assuntos
Equinodermos/classificação , Equinodermos/genética , Éxons/genética , Genômica/métodos , Animais , DNA Mitocondrial/genética , Filogenia
3.
Open Biol ; 6(10)2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27784790

RESUMO

With over 9000 species, squamates, which include lizards and snakes, are the largest group of reptiles and second-largest order of vertebrates, spanning a vast array of appendicular skeletal morphology. As such, they provide a promising system for examining developmental and molecular processes underlying limb morphology. Using the central bearded dragon (Pogona vitticeps) as the primary study model, we examined limb morphometry throughout embryonic development and characterized the expression of three known developmental genes (GHR, Pitx1 and Shh) from early embryonic stage through to hatchling stage via reverse transcription quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC). In this study, all genes were found to be transcribed in both the forelimbs and hindlimbs of P. vitticeps. While the highest level of GHR expression occurred at the hatchling stage, Pitx1 and Shh expression was greatest earlier during embryogenesis, which coincides with the onset of the differentiation between forelimb and hindlimb length. We compared our finding of Pitx1 expression-a hindlimb-determining gene-in the forelimbs of P. vitticeps to that in a closely related Australian agamid lizard, Ctenophorus pictus, where we found Pitx1 expression to be more highly expressed in the hindlimb compared with the forelimb during early and late morphogenesis-a result consistent with that found across other tetrapods. Expression of Pitx1 in forelimbs has only rarely been documented, including via in situ hybridization in a chicken and a frog. Our findings from both RT-qPCR and IHC indicate that further research across a wider range of tetrapods is needed to more fully understand evolutionary variation in molecular processes underlying limb morphology.


Assuntos
Membro Anterior/embriologia , Membro Posterior/embriologia , Lagartos/embriologia , Proteínas do Tecido Nervoso/genética , Animais , Membro Anterior/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Membro Posterior/metabolismo , Lagartos/genética , Lagartos/metabolismo , Modelos Animais , Morfogênese , Proteínas do Tecido Nervoso/metabolismo
4.
PLoS One ; 9(7): e101847, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25076129

RESUMO

Molecular phylogenetics is increasingly highlighting the prevalence of cryptic species, where morphologically similar organisms have long independent evolutionary histories. When such cryptic species are known to be declining in numbers and are at risk of extinction due to a range of threatening processes, the disjunction between molecular systematics research and conservation policy becomes a significant problem. We investigate the taxonomic status of Tympanocryptis populations in Queensland, which have previously been assigned to T. tetraporophora, using three species delimitation approaches. The taxonomic uncertainties in this species-group are of particular importance in the Darling Downs Earless Dragon (T. cf. tetraporophora), which is ranked as an endangered 'species' of high priority for conservation by the Queensland Department of Environment and Heritage Protection. We undertook a morphological study, integrated with a comprehensive genetic study and species delimitation analyses, to investigate the species status of populations in the region. Phylogenetic analyses of two gene regions (mtDNA: ND2; nuclear: RAG1) revealed high levels of genetic divergence between populations, indicating isolation over long evolutionary time frames, and strongly supporting two independent evolutionary lineages in southeastern Queensland, from the Darling Downs, and a third in the Gulf Region of northern Queensland. Of the three species delimitation protocols used, we found integrative taxonomy the most applicable to this cryptic species complex. Our study demonstrates the utility of integrative taxonomy as a species delimitation approach in cryptic complexes of species with conservation significance, where limited numbers of specimens are available.


Assuntos
Evolução Molecular , Filogenia , Répteis/genética , Animais , Austrália , Espécies em Perigo de Extinção , Genes Mitocondriais , Filogeografia , Répteis/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA