Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Sensors (Basel) ; 23(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36617057

RESUMO

This study assesses the ability of a new active fluorometer, the LabSTAF, to diagnostically assess the physiology of freshwater cyanobacteria in a reservoir exhibiting annual blooms. Specifically, we analyse the correlation of relative cyanobacteria abundance with photosynthetic parameters derived from fluorescence light curves (FLCs) obtained using several combinations of excitation wavebands, photosystem II (PSII) excitation spectra and the emission ratio of 730 over 685 nm (Fo(730/685)) using excitation protocols with varying degrees of sensitivity to cyanobacteria and algae. FLCs using blue excitation (B) and green−orange−red (GOR) excitation wavebands capture physiology parameters of algae and cyanobacteria, respectively. The green−orange (GO) protocol, expected to have the best diagnostic properties for cyanobacteria, did not guarantee PSII saturation. PSII excitation spectra showed distinct response from cyanobacteria and algae, depending on spectral optimisation of the light dose. Fo(730/685), obtained using a combination of GOR excitation wavebands, Fo(GOR, 730/685), showed a significant correlation with the relative abundance of cyanobacteria (linear regression, p-value < 0.01, adjusted R2 = 0.42). We recommend using, in parallel, Fo(GOR, 730/685), PSII excitation spectra (appropriately optimised for cyanobacteria versus algae), and physiological parameters derived from the FLCs obtained with GOR and B protocols to assess the physiology of cyanobacteria and to ultimately predict their growth. Higher intensity LEDs (G and O) should be considered to reach PSII saturation to further increase diagnostic sensitivity to the cyanobacteria component of the community.


Assuntos
Cianobactérias , Ficobilissomas , Fluorescência , Ficobilissomas/metabolismo , Fotossíntese/fisiologia , Cianobactérias/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Luz
2.
Opt Express ; 30(6): 9655-9673, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35299387

RESUMO

Estimating the concentration of water constituents by optical remote sensing assumes absorption and scattering processes to be uniform over the observation depth. Using hyperspectral reflectance, we present a method to direct the retrieval of the backscattering coefficient (bb(λ)) from reflectance (> 600 nm) towards wavebands where absorption by water dominates the reflectance curve. Two experiments demonstrate the impact of hyperspectral inversion in the selected band set. First, optical simulations show that the resulting distribution of bb(λ) is sensitive to particle mixing conditions, although a robust indicator of non-uniformity was not found for all scenarios of stratification. Second, in the absence of spectral backscattering profiles from in situ data sets, it is shown how substituting the median of bb(λ) into a near infra-red / red band ratio algorithm improved chlorophyll-a estimates (root mean square error 75.45 mg m-3 became 44.13 mg m-3). This approach also allows propagation of the uncertainty in bb estimates to water constituent concentrations.

3.
Glob Chang Biol ; 25(10): 3365-3380, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31095834

RESUMO

Cyanobacterial blooms are an increasing threat to water quality and global water security caused by the nutrient enrichment of freshwaters. There is also a broad consensus that blooms are increasing with global warming, but the impacts of other concomitant environmental changes, such as an increase in extreme rainfall events, may affect this response. One of the potential effects of high rainfall events on phytoplankton communities is greater loss of biomass through hydraulic flushing. Here we used a shallow lake mesocosm experiment to test the combined effects of: warming (ambient vs. +4°C increase), high rainfall (flushing) events (no events vs. seasonal events) and nutrient loading (eutrophic vs. hypertrophic) on total phytoplankton chlorophyll-a and cyanobacterial abundance and composition. Our hypotheses were that: (a) total phytoplankton and cyanobacterial abundance would be higher in heated mesocosms; (b) the stimulatory effects of warming on cyanobacterial abundance would be enhanced in higher nutrient mesocosms, resulting in a synergistic interaction; (c) the recovery of biomass from flushing induced losses would be quicker in heated and nutrient-enriched treatments, and during the growing season. The results supported the first and, in part, the third hypotheses: total phytoplankton and cyanobacterial abundance increased in heated mesocosms with an increase in common bloom-forming taxa-Microcystis spp. and Dolichospermum spp. Recovery from flushing was slowest in the winter, but unaffected by warming or higher nutrient loading. Contrary to the second hypothesis, an antagonistic interaction between warming and nutrient enrichment was detected for both cyanobacteria and chlorophyll-a demonstrating that ecological surprises can occur, dependent on the environmental context. While this study highlights the clear need to mitigate against global warming, oversimplification of global change effects on cyanobacteria should be avoided; stressor gradients and seasonal effects should be considered as important factors shaping the response.


Assuntos
Cianobactérias , Fitoplâncton , Eutrofização , Lagos , Nutrientes
4.
J Plankton Res ; 44(3): 365-385, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35664085

RESUMO

Compared to other methods to monitor and detect cyanobacteria in phytoplankton populations, fluorometry gives rapid, robust and reproducible results and can be used in situ. Fluorometers capable of providing biomass estimates and physiological information are not commonly optimized to target cyanobacteria. This study provides a detailed overview of the fluorescence kinetics of algal and cyanobacterial cultures to determine optimal optical configurations to target fluorescence mechanisms that are either common to all phytoplankton or diagnostic to cyanobacteria. We confirm that fluorescence excitation channels targeting both phycocyanin and chlorophyll a associated to the Photosystem II are required to induce the fluorescence responses of cyanobacteria. In addition, emission channels centered at 660, 685 and 730 nm allow better differentiation of the fluorescence response between algal and cyanobacterial cultures. Blue-green actinic light does not yield a robust fluorescence response in the cyanobacterial cultures and broadband actinic light should be preferred to assess the relation between ambient light and photosynthesis. Significant variability was observed in the fluorescence response from cyanobacteria to the intensity and duration of actinic light exposure, which needs to be taken into consideration in field measurements.

5.
Remote Sens (Basel) ; 13(15): 1-24, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-36817948

RESUMO

Water quality measures for inland and coastal waters are available as discrete samples from professional and volunteer water quality monitoring programs and higher-frequency, near-continuous data from automated in situ sensors. Water quality parameters also are estimated from model outputs and remote sensing. The integration of these data, via data assimilation, can result in a more holistic characterization of these highly dynamic ecosystems, and consequently improve water resource management. It is becoming common to see combinations of these data applied to answer relevant scientific questions. Yet, methods for scaling water quality data across regions and beyond, to provide actionable knowledge for stakeholders, have emerged only recently, particularly with the availability of satellite data now providing global coverage at high spatial resolution. In this paper, data sources and existing data integration frameworks are reviewed to give an overview of the present status and identify the gaps in existing frameworks. We propose an integration framework to provide information to user communities through the the Group on Earth Observations (GEO) AquaWatch Initiative. This aims to develop and build the global capacity and utility of water quality data, products, and information to support equitable and inclusive access for water resource management, policy and decision making.

6.
J Environ Monit ; 12(10): 1791-8, 2010 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-20818456

RESUMO

Rising temperatures and increasing drought severity linked to global climate change are negatively impacting forest growth and function at the equatorial range edge of species distributions. Rapid dieback and range retractions are predicted to occur in many areas as temperatures continue to rise. Despite widespread negative impacts at the ecosystem level, equatorial range edges are not well studied, and their responses to climate change are poorly understood. Effective monitoring of tree responses to climate in these regions is of critical importance in order to predict and manage threats to populations. Remote sensing of impacts on forests can be combined with ground-based assessment of environmental and ecological changes to identify populations most at risk. Modelling may be useful as a 'first-filter' to identify populations of concern but, together with many remote sensing methods, often lacks adequate resolution for application at the range edge. A multidisciplinary approach, combining remote observation with targeted ground-based monitoring of local susceptible and resistant populations, is therefore required. Once at-risk regions have been identified, management can be adapted to reduce immediate risks in priority populations, and promote long-term adaptation to change. However, management to protect forest ecosystem function may be preferable where the maintenance of historical species assemblages is no longer viable.


Assuntos
Mudança Climática , Monitoramento Ambiental , Árvores/fisiologia , Conservação dos Recursos Naturais/métodos , Ecossistema , Modelos Teóricos
7.
Environ Health ; 8 Suppl 1: S11, 2009 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-20102578

RESUMO

Mass populations of toxin-producing cyanobacteria commonly develop in fresh-, brackish- and marine waters and effective strategies for monitoring and managing cyanobacterial health risks are required to safeguard animal and human health. A multi-interdisciplinary study, including two UK freshwaters with a history of toxic cyanobacterial blooms, was undertaken to explore different approaches for the identification, monitoring and management of potentially-toxic cyanobacteria and their associated risks. The results demonstrate that (i) cyanobacterial bloom occurrence can be predicted at a local- and national-scale using process-based and statistical models; (ii) cyanobacterial concentration and distribution in waterbodies can be monitored using remote sensing, but minimum detection limits need to be evaluated; (iii) cyanotoxins may be transferred to spray-irrigated root crops; and (iv) attitudes and perceptions towards risks influence the public's preferences and willingness-to-pay for cyanobacterial health risk reductions in recreational waters.


Assuntos
Cianobactérias/crescimento & desenvolvimento , Monitoramento Ambiental/métodos , Água Doce/microbiologia , Proliferação Nociva de Algas , Poluição da Água/prevenção & controle , Cianobactérias/isolamento & purificação , Humanos , Microcistinas/análise , Modelos Teóricos , Percepção , Medição de Risco , Fatores de Risco , Inquéritos e Questionários , Poluentes da Água/análise
8.
Sci Total Environ ; 572: 1307-1321, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26805447

RESUMO

The Earth's surface waters are a fundamental resource and encompass a broad range of ecosystems that are core to global biogeochemical cycling and food and energy production. Despite this, the Earth's surface waters are impacted by multiple natural and anthropogenic pressures and drivers of environmental change. The complex interaction between physical, chemical and biological processes in surface waters poses significant challenges for in situ monitoring and assessment and often limits our ability to adequately capture the dynamics of aquatic systems and our understanding of their status, functioning and response to pressures. Here we explore the opportunities that Earth observation (EO) has to offer to basin-scale monitoring of water quality over the surface water continuum comprising inland, transition and coastal water bodies, with a particular focus on the Danube and Black Sea region. This review summarises the technological advances in EO and the opportunities that the next generation satellites offer for water quality monitoring. We provide an overview of algorithms for the retrieval of water quality parameters and demonstrate how such models have been used for the assessment and monitoring of inland, transitional, coastal and shelf-sea systems. Further, we argue that very few studies have investigated the connectivity between these systems especially in large river-sea systems such as the Danube-Black Sea. Subsequently, we describe current capability in operational processing of archive and near real-time satellite data. We conclude that while the operational use of satellites for the assessment and monitoring of surface waters is still developing for inland and coastal waters and more work is required on the development and validation of remote sensing algorithms for these optically complex waters, the potential that these data streams offer for developing an improved, potentially paradigm-shifting understanding of physical and biogeochemical processes across large scale river-sea systems including the Danube-Black Sea is considerable.

9.
Sci Total Environ ; 426: 32-44, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22521168

RESUMO

Mass populations of toxin-producing cyanobacteria are an increasingly common occurrence in inland and coastal waters used for recreational purposes. These mass populations pose serious risks to human and animal health and impose potentially significant economic costs on society. In this study, we used contingent valuation (CV) methods to elicit public willingness to pay (WTP) for reductions in the morbidity risks posed by blooms of toxin-producing cyanobacteria in Loch Leven, Scotland. We found that 55% of respondents (68% excluding protest voters) were willing to pay for a reduction in the number of days per year (from 90, to either 45 or 0 days) that cyanobacteria pose a risk to human health at Loch Leven. The mean WTP for a risk reduction was UK£9.99-12.23/household/year estimated using a logistic spike model. In addition, using the spike model and a simultaneous equations model to control for endogeneity bias, we found the respondents' WTP was strongly dependent on socio-demographic characteristics, economic status and usage of the waterbody, but also individual-specific attitudes and perceptions towards health risks. This study demonstrates that anticipated health risk reductions are an important nonmarket benefit of improving water quality in recreational waters and should be accounted for in future cost-benefit analyses such as those being undertaken under the auspices of the European Union's Water Framework Directive, but also that such values depend on subjective perceptions of water-related health risks and general attitudes towards the environment.


Assuntos
Conservação dos Recursos Naturais/economia , Cianobactérias/crescimento & desenvolvimento , Opinião Pública , Impostos , Poluição da Água/prevenção & controle , Análise Custo-Benefício , Política Ambiental , Humanos , Risco , Comportamento de Redução do Risco , Fatores Socioeconômicos , Inquéritos e Questionários , Poluição da Água/economia
10.
Environ Sci Technol ; 43(7): 2627-33, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19452927

RESUMO

Mass populations of toxic cyanobacteria in recreational waters can present a serious risk to human health. Intelligence on the abundance and distribution of cyanobacteria is therefore needed to aid risk assessment and management activities. In this paper, we use data from the Compact Airborne Spectrographic Imager-2 (CASI-2) to monitor seasonal change in the concentration of chlorophyll a (Chl a) and the cyanobacterial biomarker pigment C-phycocyanin (C-PC) in a series of shallow lakes in the U.K. The World Health Organization guidance levels for cyanobacteria in recreational waters were subsequently used to build a decision tree classification model for cyanobacterial risk assessment which was driven using Chl a and C-PC products derived from the CASI-2 data. The results demonstrate that remote sensing can be used to acquire intelligence on the distribution and abundance of cyanobacteria in inland waterbodies. It is argued the use of remote sensing reconnaissance, in conjunction with in situ based monitoring approaches, would greatly aid the assessment of cyanobacterial risks in inland waters and improve our ability to protect human health.


Assuntos
Cianobactérias/patogenicidade , Sistemas de Informação Geográfica , Algoritmos , Cianobactérias/crescimento & desenvolvimento , Humanos , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA