Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2400565, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602450

RESUMO

Inherent dendrite growth and side reactions of zinc anode caused by its unstable interface in aqueous electrolytes severely limit the practical applications of zinc-ion batteries (ZIBs). To overcome these challenges, a protective layer for Zn anode inspired by cytomembrane structure is developed with PVA as framework and silk fibroin gel suspension (SFs) as modifier. This PVA/SFs gel-like layer exerts similar to the solid electrolyte interphase, optimizing the anode-electrolyte interface and Zn2+ solvation structure. Through interface improvement, controlled Zn2+ migration/diffusion, and desolvation, this buffer layer effectively inhibits dendrite growth and side reactions. The additional SFs provide functional improvement and better interaction with PVA by abundant functional groups, achieving a robust and durable Zn anode with high reversibility. Thus, the PVA/SFs@Zn symmetric cell exhibits an ultra-long lifespan of 3150 h compared to bare Zn (182 h) at 1.0 mAh cm-2-1.0 mAh cm-2, and excellent reversibility with an average Coulombic efficiency of 99.04% under a large plating capacity for 800 cycles. Moreover, the PVA/SFs@Zn||PANI/CC full cells maintain over 20 000 cycles with over 80% capacity retention under harsh conditions at 5 and 10 A g-1. This SF-modified protective layer for Zn anode suggests a promising strategy for reliable and high-performance ZIBs.

2.
Int J Biol Macromol ; 253(Pt 5): 127146, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37778581

RESUMO

There is a great demand for the fabrication of soft electronics using hydrogels due to their biomimetic structures and good flexibility. However, conventional hydrogels have poor mechanical properties, which restricts their applications as stretchable sensors. Herein, a facile one-step strategy is proposed to fabricate tough and conductive hydrogels by making use of the graftability of carboxymethyl chitosan without extra conductive matter and crosslinking agent. The obtained polyacrylamide/carboxymethyl chitosan composite hydrogels possess outstanding transmittance and excellent mechanical performances, with tensile breaking stress of 630 kPa, breaking strain of 4560 %, toughness of 8490 kJ/m3. These hydrogels have low modulus of 5-20 kPa, fast recoverability after unloading, high conductivity of ∼0.85 S/m without the addition of other conductive substances and good biocompatibility. The ionic conductivity of the gels originates from the counterions of carboxymethyl chitosan, affording the hydrogels as resistive-type sensors. The resultant hydrogel sensors demonstrate a broad strain window (0.12-1500 %), excellent linear response, high sensitivity with the gauge factor reaching 11.72, and great durability, capable of monitoring diverse human motions. This work provides a new strategy to develop stretchable conductive hydrogels with promising applications in the fields of artificial intelligence and flexible electronics.


Assuntos
Quitosana , Humanos , Quitosana/química , Inteligência Artificial , Hidrogéis/química , Condutividade Elétrica
3.
Int J Biol Macromol ; 212: 1-10, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35577196

RESUMO

Regenerated silk fibroin (RSF) hydrogels have been extensively studied in the fields of biomedicine and wearable devices in recent years due to their outstanding biocompatibility. However, the pure RSF hydrogels usually exhibited frangibility and low ductility, limiting their application in many aspects severely. Herein, we demonstrate a tough RSF/poly (N, N-dimethylallylamine) hydrogel with semi-interpenetrating network, which possesses good mechanical properties with high stretchability (εb = 900%), tensile strength (σb = 101.7 kPa), toughness (Wf = 516.7 kJ/m3) and tearing fracture energy (T = 407.3 J/m2). Besides, the gels show low residual strain in the cyclic tests and rapid self-recovery (80% toughness recovery within 5 min with the maximum strain of 400%). Moreover, the gels also show high ionic conductivity due to the incorporation of the NaCl and the hydrogel can act as an ideal candidate for strain sensor with high sensitivity (GF = 1.84), admirable linearity, and good durability (1000 cycles with the strain of 100%). When used as a wearable strain sensor for monitoring human movements, it also can detect small and large deformations with high sensitivity. It is expected that this work can provide a new strategy for the fabrication of smart RSF-based hydrogels and expand their application in multiple scenarios.


Assuntos
Fibroínas , Dispositivos Eletrônicos Vestíveis , Condutividade Elétrica , Humanos , Hidrogéis , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA