Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Neurosci ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38936819

RESUMO

Activation of metabotropic glutamate 2 (mGlu2) receptors is a potential novel therapeutic approach for the treatment of parkinsonism. Thus, when administered as monotherapy or as adjunct to a low dose of L-3,4-dihydroxyphenylalanine (L-DOPA), the mGlu2 positive allosteric modulator (PAM) LY-487,379 alleviated parkinsonism in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned primates. Here, we sought to investigate the effect of biphenyl-indanone A (BINA), a highly selective mGlu2 PAM whose chemical scaffold is unrelated to LY-487,379, to determine if a structurally different mGlu2 PAM would also confer anti-parkinsonian benefit. In monotherapy experiments, MPTP-lesioned marmosets were injected with either vehicle, L-DOPA/benserazide (15/3.75 mg/kg, positive control) or BINA (0.1, 1, 10 mg/kg). In adjunct to a low L-DOPA dose experiments, MPTP-lesioned marmosets were injected with L-DOPA/benserazide (7.5/1.875 mg/kg) in combination with vehicle or BINA (0.1, 1, 10 mg/kg). Parkinsonism, dyskinesia and psychosis-like behaviours (PLBs) were then quantified. When administered alone, BINA 1 and 10 mg/kg decreased parkinsonism severity by ~22% (p < 0.01) and ~47% (p < 0.001), when compared with vehicle, which was comparable with the global effect of a high L-DOPA dose. When administered in combination with a low L-DOPA dose, BINA 1 and 10 mg/kg decreased global parkinsonism by ~38% (p < 0.001) and ~53% (p < 0.001). BINA 10 mg/kg decreased global dyskinesia by ~94% (p < 0.01) and global PLBs by ~92% (p < 0.01). Our results provide additional evidence that mGlu2 positive allosteric modulation elicits anti-parkinsonian effects. That this benefit is not related to a particular chemical scaffold suggests that it may be a class effect rather than the effect of a specific molecule.

2.
Behav Pharmacol ; 35(4): 185-192, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38563661

RESUMO

LY-404,039 is an orthosteric agonist at metabotropic glutamate 2 and 3 (mGlu 2/3 ) receptors, with a possible additional agonist effect at dopamine D 2 receptors. LY-404,039 and its pro-drug, LY-2140023, have previously been tested in clinical trials for psychiatric indications and could therefore be repurposed if they were shown to be efficacious in other conditions. We have recently demonstrated that the mGlu 2/3 orthosteric agonist LY-354,740 alleviated L-3,4-dihydroxyphenylalanine (L-DOPA)-induced abnormal involuntary movements (AIMs) in the 6-hydroxydopamine (6-OHDA)-lesioned rat without hampering the anti-parkinsonian action of L-DOPA. Here, we seek to take advantage of a possible additional D 2 -agonist effect of LY-404,039 and see if an anti-parkinsonian benefit might be achieved in addition to the antidyskinetic effect of mGlu 2/3 activation. To this end, we have administered LY-404,039 (vehicle, 0.1, 1 and 10 mg/kg) to 6-OHDA-lesioned rats, after which the severity of axial, limbs and oro-lingual (ALO) AIMs was assessed. The addition of LY-404,039 10 mg/kg to L-DOPA resulted in a significant reduction of ALO AIMs over 60-100 min (54%, P  < 0.05). In addition, LY-404,039 significantly enhanced the antiparkinsonian effect of L-DOPA, assessed through the cylinder test (76%, P  < 0.01). These results provide further evidence that mGlu 2/3 orthosteric stimulation may alleviate dyskinesia in PD and, in the specific case of LY-404,039, a possible D 2 -agonist effect might also make it attractive to address motor fluctuations. Because LY-404,039 and its pro-drug have been administered to humans, they could possibly be advanced to Phase IIa trials rapidly for the treatment of motor complications in PD.


Assuntos
Discinesia Induzida por Medicamentos , Transtornos Parkinsonianos , Receptores de Glutamato Metabotrópico , Animais , Masculino , Ratos , Aminoácidos/farmacologia , Antiparkinsonianos/farmacologia , Compostos Bicíclicos com Pontes/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Discinesia Induzida por Medicamentos/tratamento farmacológico , Agonistas de Aminoácidos Excitatórios/farmacologia , Levodopa/farmacologia , Oxidopamina , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Ratos Sprague-Dawley , Ratos Wistar , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/metabolismo
3.
Exp Brain Res ; 242(5): 1203-1214, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38526743

RESUMO

L-3,4-dihydroxyphenylalanine (L-DOPA) is the main treatment for Parkinson's disease (PD) but with long term administration, motor complications such as dyskinesia are induced. Glycine transporter 1 (GlyT1) inhibition was shown to produce an anti-dyskinetic effect in parkinsonian rats and primates, coupled with an improvement in the anti-parkinsonian action of L-DOPA. The expression of GlyT1 in the brain in the dyskinetic state remains to be investigated. Here, we quantified the levels of GlyT1 across different brain regions using [3H]-NFPS in the presence of Org-25,935. Brain sections were chosen from sham-lesioned rats, L-DOPA-naïve 6-hydroxydopamine (6-OHDA)-lesioned rats and 6-OHDA-lesioned rats exhibiting mild or severe abnormal involuntary movements (AIMs). [3H]-NFPS binding decreased in the ipsilateral and contralateral thalamus, by 28% and 41%, in 6-OHDA-lesioned rats with severe AIMs compared to sham-lesioned animals (P < 0.01 and 0.001). [3H]-NFPS binding increased by 21% in the ipsilateral substantia nigra of 6-OHDA-lesioned rats with severe AIMs compared to 6-OHDA-lesioned rats with mild AIMs (P < 0.05). [3H]-NFPS binding was lower by 19% in the contralateral primary motor cortex and by 20% in the contralateral subthalamic nucleus of 6-OHDA-lesioned rats with mild AIMs animals compared to rats with severe AIMs (both P < 0.05). The severity of AIMs scores positively correlated with [3H]-NFPS binding in the ipsilateral substantia nigra (P < 0.05), ipsilateral entopeduncular nucleus (P < 0.05) and contralateral primary motor cortex (P < 0.05). These data provide an anatomical basis to explain the efficacy of GlyT1 inhibitors in dyskinesia in PD.


Assuntos
Encéfalo , Proteínas da Membrana Plasmática de Transporte de Glicina , Oxidopamina , Sarcosina/análogos & derivados , Animais , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Glicina/antagonistas & inibidores , Ratos , Masculino , Oxidopamina/farmacologia , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Transtornos Parkinsonianos/metabolismo , Ratos Sprague-Dawley , Modelos Animais de Doenças , Trítio , Lateralidade Funcional/fisiologia
4.
Neurologist ; 29(3): 173-178, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38250816

RESUMO

INTRODUCTION: Restless Legs Syndrome (RLS) is a neurological disorder primarily treated with pregabalin and gabapentin, followed by dopamine agonists later in the process due to the risk of augmenting RLS symptoms. In addition, clinical reports have disclosed varying degrees of success employing other agents in patients unresponsive to traditional agents. Here, we present a patient who had success in the reduction of RLS symptoms with lamotrigine, a broad-spectrum anticonvulsant. Previously, lamotrigine had been used in 2 trials with successful treatment of RLS. CASE REPORT: We present a 58-year-old right-handed lady with long-standing history of smoking, hypertension, dyslipidaemia, prediabetes, gastro-esophageal reflux disease, asthma, strabismus, uterine cancer, severe and debilitating course of RLS accompanied by unexplained deterioration. The patient initially demonstrated abnormal sensation in all her limbs, which worsened with radiotherapy treatment, and was eventually diagnosed with RLS based on the diagnostic criteria. Subsequent examinations were unremarkable and revealed no further explanation for the deterioration of the RLS symptoms. While the complexity of the patient's medical history had exposed her to a variety of medications, she reported that only lamotrigine, in addition to her original regimen of methadone and pramipexole, offered significant symptomatic relief. It must be noted that no adverse side effects, including impulse-control disorder, were reported by the patient. CONCLUSIONS: We present a case of a woman whose deteriorating symptoms of RLS were successfully alleviated by the administration of lamotrigine. This is only the third case in the literature to have successfully utilized lamotrigine as a treatment option for RLS.


Assuntos
Anticonvulsivantes , Lamotrigina , Síndrome das Pernas Inquietas , Triazinas , Humanos , Síndrome das Pernas Inquietas/tratamento farmacológico , Feminino , Lamotrigina/uso terapêutico , Lamotrigina/efeitos adversos , Pessoa de Meia-Idade , Anticonvulsivantes/uso terapêutico , Anticonvulsivantes/efeitos adversos , Triazinas/uso terapêutico , Triazinas/efeitos adversos
5.
J Chem Neuroanat ; 138: 102422, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38657828

RESUMO

L-3,4-dihydroxyphenylalanine (L-DOPA) is the treatment of choice for Parkinson's disease (PD) motor symptoms, but its chronic use is hindered by complications such as dyskinesia. Pre-clinical studies discovered that activation of metabotropic glutamate type 2 and 3 (mGlu2/3) receptors alleviates L-DOPA-induced dyskinesia. To gain mechanistic insight into the anti-dyskinetic activity of mGlu2/3 activation, we performed autoradiographic binding with [3H]-LY-341,495 in brain sections from L-DOPA-treated 6-hydroxydopamine (6-OHDA)-lesioned rats that developed mild or severe dyskinesia, as well as L-DOPA-untreated 6-OHDA-lesioned and sham-lesioned animals. In the ipsilateral hemisphere, mildly dyskinetic 6-OHDA-lesioned rats showed a decrease in [3H]-LY-341,495 binding in the entopeduncular nucleus (EPN, 30 % vs sham-lesioned rats, P<0.05), globus pallidus (GP, 28 % vs sham-lesioned rats, P<0.05; 23 % vs L-DOPA-untreated 6-OHDA-lesioned rats, P<0.001), and primary motor cortex (49 % vs sham-lesioned rats, P<0.05; 45 % vs L-DOPA-untreated 6-OHDA-lesioned rats, P<0.001). Severely dyskinetic 6-OHDA-lesioned rats exhibited an increase in binding in the primary motor cortex (43 % vs mildly dyskinetic 6-OHDA-lesioned rats, P<0.05). In the contralateral hemisphere, mildly dyskinetic 6-OHDA-lesioned rats harboured a decrease in binding in the EPN (30 % vs sham-lesioned rats; 24 % vs L-DOPA-untreated 6-OHDA-lesioned rats, both P<0.05), GP (34 % vs sham-lesioned rats, P<0.05; 23 % vs L-DOPA-untreated 6-OHDA-lesioned rats, P<0.001), and primary motor cortex (50 % vs sham-lesioned rats; 44 % vs L-DOPA-untreated 6-OHDA-lesioned rats, both P<0.05). Severely dyskinetic 6-OHDA-lesioned rats presented a decrease in binding in the GP (30 % vs sham-lesioned rats; 19 % vs L-DOPA-untreated 6-OHDA-lesioned rats, both P<0.05). Abnormal involuntary movements scores of 6-OHDA-lesioned animals were positively correlated with [3H]-LY-341,495 binding in the ipsilateral striatum, ipsilateral EPN, ipsilateral primary motor cortex and contralateral primary motor cortex (all P<0.05). These results suggest that alterations in mGlu2/3 receptor levels may be part of an endogenous compensatory mechanism to alleviate dyskinesia.


Assuntos
Autorradiografia , Encéfalo , Levodopa , Oxidopamina , Receptores de Glutamato Metabotrópico , Animais , Ratos , Receptores de Glutamato Metabotrópico/metabolismo , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Masculino , Oxidopamina/toxicidade , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/induzido quimicamente , Ratos Sprague-Dawley , Discinesia Induzida por Medicamentos/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-38861009

RESUMO

There is mounting evidence that positive allosteric modulation of metabotropic glutamate type 2 receptors (mGluR2) is an efficacious approach to reduce the severity of L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia, psychosis-like behaviours (PLBs), while conferring additional anti-parkinsonian benefit. However, the mGluR2 positive allosteric modulators (PAMs) tested so far, LY-487,379 and CBiPES, share a similar chemical scaffold. Here, we sought to assess whether similar benefits would be conferred by a structurally-distinct mGluR2 PAM, biphenylindanone A (BINA). Six 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned marmosets exhibiting dyskinesia and PLBs were administered L-DOPA with either vehicle or BINA (0.1, 1, and 10 mg/kg) in a randomised within-subject design and recorded. Behaviour was analysed by a blinded rater who scored the severity of each of parkinsonism, dyskinesia and PLBs. When added to L-DOPA, BINA 0.1 mg/kg, 1 mg/kg, and 10 mg/kg all significantly reduced the severity of global dyskinesia, by 40%, 52% and 53%, (all P < 0.001) respectively. BINA similarly attenuated the severity of global PLBs by 35%, 48%, and 50%, (all P < 0.001) respectively. Meanwhile, BINA did not alter the effect of L-DOPA on parkinsonism exhibited by the marmosets. The results of this study provide incremental evidence of positive allosteric modulation of mGluR2 as an effective therapeutic strategy for alleviating dyskinesia and PLBs, without hindering the anti-parkinsonian action of L-DOPA. Furthermore, this therapeutic benefit does not appear to be confined to a particular chemical scaffold.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38900249

RESUMO

We have previously discovered that the selective activation of metabotropic glutamate type 2 receptors (mGluR2) and concurrent stimulation of metabotropic glutamate types 2 and 3 receptors (mGluR2/3) enhance the anti-parkinsonian action of L-3,4-dihydroxyphenylalanine (L-DOPA). Here, we sought to determine the effects of the mGluR2/3 orthosteric agonists LY-354,740 and LY-404,039, as well as the effects of the mGluR2 positive allosteric modulators LY-487,379 and CBiPES on the range of movement, bradykinesia, posture and alertness as adjuncts to L-DOPA. Ten 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned marmosets entered 4 experimental streams: L-DOPA + LY-354,740 (vehicle, 0.1, 0.3 and 1 mg/kg), L-DOPA + LY-404,039 (vehicle, 0.1, 1 and 10 mg/kg), L-DOPA + LY-487,379 (vehicle, 0.1, 1 and 10 mg/kg), L-DOPA + CBiPES (vehicle, 0.1, 1 and 10 mg/kg). For each molecule, treatments were randomised, and the range of movement, bradykinesia, posture and alertness were assessed by a blinded rater. None of the tested compounds significantly altered the global range of movement. LY-404,039 and CBiPES both reduced global bradykinesia, by up to 46% (both P < 0.05). LY-354,740, LY-404,039 and CBiPES each improved global posture by 35%, 44% and 39% (each P < 0.05), respectively. LY-404,039 and CBiPES both enhanced alertness by 54% (P < 0.05) and 79% (P < 0.01), respectively. LY-487,379 did not improve any of the parameters. Our results suggest that selective mGluR2 positive allosteric modulation and combined mGluR2/3 orthosteric stimulation might benefit bradykinesia, posture and alertness in PD when added to L-DOPA, which potentially represent novel therapeutic indications for molecules acting via these mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA