Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
J Environ Manage ; 352: 119967, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38237332

RESUMO

Globally waste incineration is becoming the predominant treatment method of solid waste. The largest fraction of solid residue of this process is incineration bottom ash (IBA) requiring further treatment before applications such as in the construction industry become feasible. In this study, vitrification of IBA was conducted in a demonstration-scale high-temperature slagging gasification plant fueled with MSW and biomass charcoal as a green auxiliary fuel. High IBA co-feeding rates of up to 491 kg/h (equivalent to 107% of MSW feeding rate) were achieved during the trials. A highly leaching-resistant slag immobilizing heavy metals in the glass-like amorphous structure and recyclable iron-rich metal granules were generated in the process. The heavy metal migration into the solid by-product fractions depended on the IBA feeding rates and process conditions such as cold cap temperature, charcoal-to-ash ratio, and gasifier temperature profile. Slaked lime and activated carbon powder were used in a dry flue gas treatment and stack gas emissions were kept well below Singapore's regulatory limits. Steam from the hot flue gas was generated in a boiler to drive a steam turbine. The application of biomass charcoal instead of fossil fuels or electricity lead to a lower carbon footprint compared to alternative vitrification technologies. The overall results reveal promising application of high temperature slagging gasification process for commercial-scale vitrification of IBA.


Assuntos
Metais Pesados , Eliminação de Resíduos , Cinza de Carvão/química , Vapor , Pegada de Carbono , Carvão Vegetal , Vitrificação , Incineração/métodos , Metais Pesados/química , Resíduos Sólidos
2.
Eur J Oral Sci ; 129(3): e12783, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33724569

RESUMO

This aim of this study was to investigate the effects of three types of air-abrasion particles on dual-species biofilms of Fusobacterium nucleatum and Porphyromonas gingivalis, both of which were cultured on sandblasted and acid-etched (SA) titanium discs. Out of 24 SA discs with biofilm, 18 were exposed to either air-abrasion using Bioglass 45S5 (45S5 BG; n = 6), novel zinc (Zn)-containing bioactive glass (Zn4 BG; n = 6), or inert glass (n = 6). The efficiency of biofilm removal was evaluated using scanning electron microscopy (SEM) imaging and culturing techniques. Air-abrasion using 45S5 BG or Zn4 BG demonstrated a significant decrease in the total number of viable bacteria compared to discs air-abraded with inert glass or intact biofilm without abrasion. Moreover, P. gingivalis could not be detected from SEM images nor culture plates after air-abrasion with 45S5 BG or Zn4 BG. The present study showed that air-abrasion with 45S5 or Zn4 bioactive glasses can successfully eradicate dual-biofilm of F. nucleatum and P. gingivalis from sandblasted and acid-etched titanium discs.


Assuntos
Fusobacterium nucleatum , Porphyromonas gingivalis , Biofilmes , Microscopia Eletrônica de Varredura , Titânio
3.
Eur J Oral Sci ; 128(2): 160-169, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32154611

RESUMO

The aim of this study was to evaluate the hydrophilicity, surface free energy, and proliferation and viability of human osteoblast-like MC3T3-E1 cells on sandblasted and acid-etched titanium surfaces after air-abrasion with 45S5 bioactive glass, zinc-containing bioactive glass, or inert glass. Sandblasted and acid-etched titanium discs were subjected to air-abrasion with 45S5 bioactive glass, experimental bioactive glass (Zn4), or inert glass. Water contact angles and surface free energy were evaluated. The surfaces were studied with preosteoblastic MC3T3-E1 cells. Air-abrasion with either type of glass significantly enhanced the hydrophilicity and surface free energy of the sandblasted and acid-etched titanium discs. The MC3T3-E1 cell number was higher for substrates air-abraded with Zn4 bioactive glass and similar to that observed on borosilicate coverslips (controls). Confocal laser scanning microscopy images showed that MC3T3-E1 cells did not spread as extensively on the sandblasted and acid-etched and bioactive glass-abraded surfaces as they did on control surfaces. However, for 45S5- and Zn4-treated samples, the cells spread most at the 24 h time point and changed their morphology to more spindle-like when cultured further. Air-abrasion with bioactive glass and inert glass was shown to have a significant effect on the wettability and surface free energy of the surfaces under investigation. Osteoblast cell proliferation on sandblasted and acid-etched titanium discs was enhanced by air-abrasion with 45S5 bioactive glass and experimental Zn4 bioactive glass compared with air-abrasion with inert glass or no air-abrasion.


Assuntos
Osteoblastos , Proliferação de Células , Humanos , Microscopia Eletrônica de Varredura , Propriedades de Superfície , Titânio , Molhabilidade
4.
Int J Mol Sci ; 21(5)2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32121249

RESUMO

The ICIE16-bioactive glass (BG) (48.0 SiO2, 6.6 Na2O, 32.9 CaO, 2.5 P2O5, 10.0 K2O (wt %)) has been developed as an alternative to 45S5-BG, the original BG composition (45.0 SiO2, 24.5 Na2O, 24.5 CaO, 6.0 P2O5 (wt %)), with the intention of broadening the BG sintering window while maintaining bioactivity. Because there is a lack of reports on ICIE16-BG biological properties, the influence of ICIE16-BG on viability, proliferation, and osteogenic differentiation of human mesenchymal stromal cells (MSCs) was evaluated in direct comparison to 45S5-BG in this study. The BGs underwent heat treatment similar to that which is required in order to fabricate scaffolds by sintering, which resulted in crystallization of 45S5-BG (45S5-CBG) while ICIE16 remained amorphous. Granules based on both BGs were biocompatible, but ICIE16-BG was less harmful to cell viability, most likely due to a more pronounced pH alkalization in the 45S5-CBG group. ICIE16-BG outperformed 45S5-CBG in terms of osteogenic differentiation at the cellular level, as determined by the increased activity of alkaline phosphatase. However, granules from both BGs were comparable regarding the stimulation of expression levels of genes encoding for osseous extracellular matrix (ECM) proteins. The addition of therapeutically active ions to ICIE16-BG might further improve its ability to stimulate ECM production and should be investigated in upcoming studies.


Assuntos
Cerâmica/farmacologia , Osteogênese , Fosfatase Alcalina/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colágeno Tipo I/metabolismo , Cristalização , Vidro , Humanos , Concentração de Íons de Hidrogênio , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteocalcina/metabolismo , Osteogênese/efeitos dos fármacos , Osteopontina/metabolismo
5.
J Oral Implantol ; 45(6): 444-450, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31536440

RESUMO

Streptococcus mutans is able to form a high-affinity biofilm on material surfaces. S mutans has also been detected around infected implants. Bioactive glasses (BAGs) have been shown to possess antibacterial effects against S mutans and other microorganisms. This in vitro study was performed to investigate the influence of BAG air abrasion on S mutans biofilm on sandblasted and acid-etched titanium surfaces. Sandblasted and acid-etched commercially pure titanium discs were used as substrates for bacteria (n = 107). The discs were immersed in an S mutans solution and incubated for 21 hours to form an S mutans biofilm. Twenty colonized discs were subjected to air abrasion with Bioglass 45S5 (45S5 BAG), experimental zinc oxide containing BAG (Zn4 BAG), and inert glass. After the abrasion, the discs were incubated for 5 hours in an anaerobic chamber followed by an assessment of viable S mutans cells. Surface morphology was evaluation using scanning electron microscopy (n = 12). The thrombogenicity of the glass particle-abraded discs (n = 75) was evaluated spectrophotometrically using whole-blood clotting measurement at predetermined time points. Air abrasion with 45S5 and Zn4 BAG eradicated S mutans biofilm. Significantly fewer viable S mutans cells were found on discs abraded with the 45S5 or Zn4 BAGs compared with the inert glass (P < .001). No significant differences were found in thrombogenicity since blood clotting was achieved for all substrates at 40 minutes. Air abrasion with BAG particles is effective in the eradication of S mutans biofilm from sandblasted and acid-etched titanium surfaces. Zn4 and 45S5 BAGs had similar biofilm-eradicating effects, but Zn4 BAG could be more tissue friendly. In addition, the steady release of zinc ions from Zn4 may enhance bone regeneration around the titanium implant and may thus have the potential to be used in the treatment of peri-implantitis. The use of either BAGs did not enhance the speed of blood coagulation.


Assuntos
Peri-Implantite , Streptococcus mutans , Biofilmes , Humanos , Microscopia Eletrônica de Varredura , Propriedades de Superfície , Titânio
6.
J Mater Sci Mater Med ; 25(3): 657-68, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24338267

RESUMO

Commercial melt-quenched bioactive glasses consist of the oxides of silicon, phosphorus, calcium and sodium. Doping of the glasses with oxides of some other elements is known to affect their capability to support hydroxyapatite formation and thus bone tissue healing but also to modify their high temperature processing parameters. In the present study, the influence of gradual substitution of SrO for CaO on the properties of the bioactive glass S53P4 was studied. Thermal analysis and hot stage microscopy were utilized to measure the thermal properties of the glasses. The in vitro bioactivity and solubility was measured by immersing the glasses in simulated body fluid for 6 h to 1 week. The formation of silica rich and hydroxyapatite layers was assessed from FTIR spectra analysis and SEM images of the glass surface. Increasing substitution of SrO for CaO decreased all characteristic temperatures and led to a slightly stronger glass network. The initial glass dissolution rate increased with SrO content. Hydroxyapatite layer was formed on all glasses but on the SrO containing glasses the layer was thinner and contained also strontium. The results suggest that substituting SrO for CaO in S53P4 glass retards the bioactivity. However, substitution greater than 10 mol% allow for precipitation of a strontium substituted hydroxyapatite layer.


Assuntos
Líquidos Corporais/química , Substitutos Ósseos/síntese química , Compostos de Cálcio/química , Durapatita/síntese química , Vidro/química , Óxidos/química , Estrôncio/química , Teste de Materiais , Conformação Molecular , Propriedades de Superfície , Condutividade Térmica
7.
J Mater Sci Mater Med ; 25(1): 151-62, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24022800

RESUMO

This in vitro study was designed to evaluate both blood and human gingival fibroblast responses to bisphenol A-glycidyl methacrylate-triethyleneglycol dimethacrylate (BisGMA-TEGDMA)/bioactive glass (BAG) composite, aimed to be used as composite implant abutment surface modifier. Three different types of substrates were investigated: (a) plain polymer (BisGMA 50 wt%-TEGDMA 50 wt%), (b) BAG-composite (50 wt% polymer + 50 wt% fraction of BAG-particles, <50 µm), and (c) plain BAG plates (100 wt% BAG). The blood response, including the blood-clotting ability and platelet adhesion morphology were evaluated. Human gingival fibroblasts were plated and cultured on the experimental substrates for up to 10 days, then the cell proliferation rate was assessed using AlamarBlue assay™. The BAG-composite and plain BAG substrates had a shorter clotting time than plain polymer substrates. Platelet activation and aggregation were most extensive, qualitatively, on BAG-composite. Analysis of the normalized cell proliferation rate on the different surfaces showed some variations throughout the experiment, however, by day 10 the BAG-composite substrate showed the highest (P < 0.001) cell proliferation rate. In conclusion, the presence of exposed BAG-particles enhances fibroblast and blood responses on composite surfaces in vitro.


Assuntos
Bis-Fenol A-Glicidil Metacrilato/farmacologia , Resinas Compostas/farmacologia , Implantes Dentários , Materiais Dentários/farmacologia , Vidro/química , Polietilenoglicóis/farmacologia , Ácidos Polimetacrílicos/farmacologia , Adsorção , Bis-Fenol A-Glicidil Metacrilato/química , Coagulação Sanguínea/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Resinas Compostas/química , Implantes Dentários/efeitos adversos , Materiais Dentários/química , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibronectinas , Gengiva/citologia , Gengiva/efeitos dos fármacos , Humanos , Teste de Materiais , Microscopia Eletrônica de Varredura , Adesividade Plaquetária/efeitos dos fármacos , Polietilenoglicóis/química , Ácidos Polimetacrílicos/química , Propriedades de Superfície
8.
Waste Manag ; 177: 211-231, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38342059

RESUMO

In line with the objectives of the circular economy, the conversion of waste streams to useful and valuable side streams is a central goal. Ash represents one of the main industrial side-products, and using ashes in other than the present landfilling applications is, therefore, a high priority. This paper reviews the properties and utilization of ashes of different biomass power plants and waste incinerations, with a focus on the past decade. Possibilities for ash utilization are of uttermost importance in terms of circular economy and disposal of landfills. However, considering its applicability, ash originating from the heat treatment of chemically complex fuels, such as biomass and waste poses several challenges such as high heavy metal content and the presence of toxic and/or corrosive species. Furthermore, the physical properties of the ash might limit its usability. Nevertheless, numerous studies addressing the utilization possibilities of challenging ash in various applications have been carried out over the past decade. This review, with over 300 references, surveys the field of research, focusing on the utilization of biomass and municipal solid waste (MSW) ashes. Also, metal and phosphorus recovery from different ashes is addressed. It can be concluded that the key beneficial properties of the ash types addressed in this review are based on their i) alkaline nature suitable for neutralization reactions, ii) high adsorption capabilities to be used in CO2 capture and waste treatment, and iii) large surface area and appropriate chemical composition for the catalyst industry. Especially, ashes rich in Al2O3 and SiO2 have proven to be promising alternative catalysts in various industrial processes and as precursors for synthetic zeolites.


Assuntos
Incineração , Dióxido de Silício , Adsorção , Biomassa , Indústrias
9.
J Biomed Mater Res B Appl Biomater ; 112(1): e35328, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37737070

RESUMO

The mechanical properties of polylactide stereocomplexes (PLA SC) have been primarily studied through tensile testing, with inconsistent results, and the compressive properties of PLA SC compared to homocrystalline or amorphous PLA remain poorly understood. In this study, we coated porous bioactive glass 13-93 scaffolds with amorphous, homocrystalline, or stereocomplex PLA to investigate their mechanical and degradation properties before and after immersion in simulated body fluid. The glass scaffolds had interconnected pores and an average porosity of 76%. The PLA coatings, which were 10-100 µm thick and approximately 3% of the glass scaffold mass, covered the glass to a large extent. The compressive strength and toughness of all PLA-coated scaffolds were significantly higher than those of uncoated scaffolds, with approximately a fourfold increase before immersion and a twofold increase after immersion. The compressive strength and toughness of PLA SC-coated scaffolds were similar to those of scaffolds with homocrystalline PLA coating, and significantly higher than for scaffolds with amorphous PLA coating. All PLA coatings moderated the initial pH increase caused by the glass, which could benefit surrounding cells and bone tissue in vivo after implantation.


Assuntos
Vidro , Alicerces Teciduais , Porosidade , Alicerces Teciduais/química , Vidro/química , Poliésteres/química , Regeneração Óssea , Engenharia Tecidual/métodos
10.
Biomed Mater ; 19(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38266275

RESUMO

Despite their long history of application in orthopedics, the osteogenic and angiogenic properties as well as the cytocompatibility and protein adsorption of the 45S5- (in wt%: 45.0 SiO2, 24.5 Na2O, 24.5 CaO, 6.0 P2O5) and S53P4- (in wt%: 53.0 SiO2, 23.0 Na2O, 20.0 CaO, 4.0 P2O5) bioactive glass (BG) compositions have not yet been directly compared in one and the same experimental setting. In this study, the influence of morphologically equal granules of both BGs on proliferation, viability, osteogenic differentiation and angiogenic response of human bone-marrow-derived mesenchymal stromal cells (BMSCs) was assessed. Furthermore, their impact on vascular tube formation and adsorption of relevant proteins was evaluated. Both BGs showed excellent cytocompatibility and stimulated osteogenic differentiation of BMSCs. The 45S5-BG showed enhanced stimulation of bone morphogenic protein 2 (BMP2) gene expression and protein production compared to S53P4-BG. While gene expression and protein production of vascular endothelial growth factor (VEGF) were stimulated, both BGs had only limited influence on tubular network formation. 45S5-BG adsorbed a higher portion of proteins, namely BMP2 and VEGF, on its surface. In conclusion, both BGs show favorable properties with slight advantages for 45S5-BG. Since protein adsorption on BG surfaces is important for their biological performance, the composition of the proteome formed by osteogenic cells cultured on BGs should be analyzed in order to gain a deeper understanding of the mechanisms that are responsible for BG-mediated stimulation of osteogenic differentiation.


Assuntos
Osteogênese , Fator A de Crescimento do Endotélio Vascular , Humanos , Adsorção , Dióxido de Silício , Vidro
11.
Bioengineering (Basel) ; 11(1)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38247951

RESUMO

Air particle abrasion (APA) using bioactive glass (BG) effectively decontaminates titanium (Ti) surface biofilms and the retained glass particles on the abraded surfaces impart potent antibacterial properties against various clinically significant pathogens. The objective of this study was to investigate the effect of BG APA and simulated body fluid (SBF) immersion of sandblasted and acid-etched (SA) Ti surfaces on osteoblast cell viability. Another goal was to study the antibacterial effect against Streptococcus mutans. Square-shaped 10 mm diameter Ti substrates (n = 136) were SA by grit blasting with aluminum oxide particles, then acid-etching in an HCl-H2SO4 mixture. The SA substrates (n = 68) were used as non-coated controls (NC-SA). The test group (n = 68) was further subjected to APA using experimental zinc-containing BG (Zn4) and then mineralized in SBF for 14 d (Zn4-CaP). Surface roughness, contact angle, and surface free energy (SFE) were calculated on test and control surfaces. In addition, the topography and chemistry of substrate surfaces were also characterized. Osteoblastic cell viability and focal adhesion were also evaluated and compared to glass slides as an additional control. The antibacterial effect of Zn4-CaP was also assessed against S. mutans. After immersion in SBF, a mineralized zinc-containing Ca-P coating was formed on the SA substrates. The Zn4-CaP coating resulted in a significantly lower Ra surface roughness value (2.565 µm; p < 0.001), higher wettability (13.35°; p < 0.001), and higher total SFE (71.13; p < 0.001) compared to 3.695 µm, 77.19° and 40.43 for the NC-SA, respectively. APA using Zn4 can produce a zinc-containing calcium phosphate coating that demonstrates osteoblast cell viability and focal adhesion comparable to that on NC-SA or glass slides. Nevertheless, the coating had no antibacterial effect against S. mutans.

12.
J Biomed Mater Res A ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38623001

RESUMO

The 0106-B1-bioactive glass (BG) composition (in wt %: 37.5 SiO2, 22.6 CaO, 5.9 Na2O, 4.0 P2O5, 12.0 K2O, 5.5 MgO, and 12.5 B2O3) has demonstrated favorable processing properties and promising bone regeneration potential. The present study aimed to evaluate the biological effects of the incorporation of highly pro-angiogenic copper (Cu) in 0106-B1-BG in vitro using human bone marrow-derived mesenchymal stromal cells (BMSCs) as well as its in vivo potential for bone regeneration. CuO was added to 0106-B1-BG in exchange for CaO, resulting in Cu-doped BG compositions containing 1.0, 2.5 and 5.0 wt % CuO (composition in wt %: 37.5 SiO2, 21.6/ 20.1/17.6 CaO, 5.9 Na2O, 4.0 P2O5, 12.0 K2O, 5.5 MgO, 12.5 B2O3, and 1.0/ 2.5/ 5.0 CuO). In vitro, the BGs' impact on the viability, proliferation, and growth patterns of BMSCs was evaluated. Analyses of protein secretion, matrix formation, and gene expression were used for the assessment of the BGs' influence on BMSCs regarding osteogenic differentiation and angiogenic stimulation. The presence of Cu improved cytocompatibility, osteogenic differentiation, and angiogenic response when compared with unmodified 0106-B1-BG in vitro. In vivo, a critical-size femoral defect in rats was filled with scaffolds made from BGs. Bone regeneration was evaluated by micro-computed tomography. Histological analysis was performed to assess bone maturation and angiogenesis. In vivo effects regarding defect closure, presence of osteoclastic cells or vascular structures in the defect were not significantly changed by the addition of Cu compared with undoped 0106-B1-BG scaffolds. Hence, while the in vitro properties of the 0106-B1-BG were significantly improved by the incorporation of Cu, further evaluation of the BG composition is necessary to transfer these effects to an in vivo setting.

13.
J Mater Sci Mater Med ; 24(5): 1217-27, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23386212

RESUMO

Bio-active glass has been developed for use as a bone substitute with strong osteo-inductive capacity and the ability to form strong bonds with soft and hard tissue. The ability of this material to enhance tissue in-growth suggests its potential use as a substitute for the dental laminate of an osteo-odonto-keratoprosthesis. A preliminary in vitro investigation of porous bio-active glass as an OOKP skirt material was carried out. Porous glass structures were manufactured from bio-active glasses 1-98 and 28-04 containing varying oxide formulation (1-98, 28-04) and particle size range (250-315 µm for 1-98 and 28-04a, 315-500 µm for 28-04b). Dissolution of the porous glass structure and its effect on pH was measured. Structural 2D and 3D analysis of porous structures were performed. Cell culture experiments were carried out to study keratocyte adhesion and the inflammatory response induced by the porous glass materials. The dissolution results suggested that the porous structure made out of 1-98 dissolves faster than the structures made from glass 28-04. pH experiments showed that the dissolution of the porous glass increased the pH of the surrounding solution. The cell culture results showed that keratocytes adhered onto the surface of each of the porous glass structures, but cell adhesion and spreading was greatest for the 98a bio-glass. Cytokine production by all porous glass samples was similar to that of the negative control indicating that the glasses do not induce a cytokine driven inflammatory response. Cell culture results support the potential use of synthetic porous bio-glass as an OOKP skirt material in terms of limited inflammatory potential and capacity to induce and support tissue ingrowth.


Assuntos
Substitutos Ósseos/química , Cerâmica/química , Transplante de Córnea/instrumentação , Próteses e Implantes , Alicerces Teciduais/química , Substitutos Ósseos/farmacologia , Adesão Celular/efeitos dos fármacos , Técnicas de Cultura de Células/instrumentação , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cerâmica/farmacologia , Ceratócitos da Córnea/citologia , Ceratócitos da Córnea/metabolismo , Ceratócitos da Córnea/fisiologia , Citocinas/metabolismo , Humanos , Teste de Materiais , Porosidade
14.
Tissue Eng Part C Methods ; 29(5): 183-196, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37002888

RESUMO

Bioactive glasses (BAGs) are surface-active ceramic materials that can be used in bone regeneration due to their known osteoconductive and osteoinductive properties. This systematic review aimed to study the clinical and radiographic outcomes of using BAGs in periodontal regeneration. The selected studies were collected from PubMed and Web of Science databases, and included clinical studies investigating the use of BAGs on periodontal bone defect augmentation between January 2000 and February 2022. The identified studies were screened using Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. A total of 115 full-length peer-reviewed articles were identified. After excluding duplicate articles between the databases and applying the inclusion and exclusion criteria, 14 studies were selected. The Cochrane risk of bias tool for randomized trials was used to assess the selected studies. Five studies compared using BAGs with open flap debridement (OFD) without grafting materials. Two of the selected studies were performed to compare the use of BAGs with protein-rich fibrin, one of which also included an additional OFD group. Also, one study evaluated BAG with biphasic calcium phosphate and used a third OFD group. The remaining six studies compared BAG filler with hydroxyapatite, demineralized freeze-dried bone allograft, autogenous cortical bone graft, calcium sulfate ß-hemihydrate, enamel matrix derivatives, and guided tissue regeneration. This systematic review showed that using BAG to treat periodontal bone defects has beneficial effects on periodontal tissue regeneration. OSF Registration No.: 10.17605/OSF.IO/Y8UCR.


Assuntos
Perda do Osso Alveolar , Regeneração Tecidual Guiada Periodontal , Humanos , Perda do Osso Alveolar/cirurgia , Periodonto , Transplante Ósseo , Regeneração Óssea
15.
Cells ; 12(2)2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36672159

RESUMO

Bioactive glass (BaG) materials are increasingly used in clinics, but their regulatory mechanisms on osteogenic differentiation remain understudied. In this study, we elucidated the currently unknown role of the p38 MAPK downstream target heat shock protein 27 (HSP27), in the osteogenic commitment of human mesenchymal stem cells (hMSCs), derived from adipose tissue (hASCs) and bone marrow (hBMSCs). Osteogenesis was induced with ionic extract of an experimental BaG in osteogenic medium (OM). Our results showed that BaG OM induced fast osteogenesis of hASCs and hBMSCs, demonstrated by enhanced alkaline phosphatase (ALP) activity, production of extracellular matrix protein collagen type I, and matrix mineralization. BaG OM stimulated early and transient activation of p38/HSP27 signaling by phosphorylation in hMSCs. Inhibition of HSP27 phosphorylation with SB202190 reduced the ALP activity, mineralization, and collagen type I production induced by BaG OM. Furthermore, the reduced pHSP27 protein by SB202190 corresponded to a reduced F-actin intensity of hMSCs. The phosphorylation of HSP27 allowed its co-localization with the cytoskeleton. In terminally differentiated cells, however, pHSP27 was found diffusely in the cytoplasm. This study provides the first evidence that HSP27 is involved in hMSC osteogenesis induced with the ionic dissolution products of BaG. Our results indicate that HSP27 phosphorylation plays a role in the osteogenic commitment of hMSCs, possibly through the interaction with the cytoskeleton.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Humanos , Osteogênese/fisiologia , Proteínas de Choque Térmico HSP27/metabolismo , Colágeno Tipo I/metabolismo , Diferenciação Celular/fisiologia , Células-Tronco Mesenquimais/metabolismo
16.
Clin Implant Dent Relat Res ; 25(2): 409-418, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36602418

RESUMO

OBJECTIVES: The present study aimed to evaluate the healing of experimentally induced bone defects around contaminated dental implants after air-abrasion using 45S5 or zinc oxide (ZnO)-containing bioactive glasses (BAGs). MATERIALS AND METHODS: One maxillary first molar was extracted from each Sprague-Dawley rat (n = 30). After 4-week healing, a titanium implant was placed in the extraction site with a circumferential bone defect. The rats were randomized into five different groups: (1) implants with Fusobacterium nucleatum and Porphyromonas gingivalis dual-species biofilm (IB); (2) implants with biofilm subjected to inert glass air-abrasion (inert); (3) sterile implants (S); (4) implants with biofilm subjected to 45S5 BAG air-abrasion (45S5); and (5) implants with biofilm subjected to ZnO-containing BAG air-abrasion (Zn4). After 8-week healing, maxillae were dissected, and histomorphometric analyses were performed. RESULTS: The first bone-to-implant contact was significantly shorter for the inert (1.58 ± 1.16 mm; p = 0.016), S (0.28 ± 0.13 mm; p < 0.001), 45S5 (0.41 ± 0.28 mm; p < 0.001), and Zn4 (0.26 ± 0.16 mm; p < 0.001) groups compared to IB group. Also, significantly more bone-to-implant contact was seen for S (72.35% ± 8.32%; p < 0.001), 45S5 (57.91% ± 24.10%; p = 0.002), and Zn4 (70.49% ± 12.74%; p < 0.001) groups than the IB group. The bone volume with the threads demonstrated significantly higher value for S (69.32% ± 9.15%; p < 0.001), 45S5 (58.93% ± 23.53%; p = 0.001), and Zn4 (68.65% ± 12.41%; p < 0.001) groups compared to the IB group. The bone volume within the defects was significantly higher for S (68.79% ± 11.77%; p < 0.001), 45S5 (62.51% ± 20.51%; p = 0.002), and Zn4 (73.81% ± 15.07%; p < 0.001) groups compared to the IB group. CONCLUSIONS: This study suggests that air-abrasion of contaminated moderately rough implant surfaces with either 45S5 or ZnO-containing BAGs enhances osseointegration and bone defect regeneration.


Assuntos
Implantes Dentários , Óxido de Zinco , Ratos , Animais , Propriedades de Superfície , Ratos Sprague-Dawley , Osseointegração , Titânio
17.
Sci Rep ; 13(1): 6646, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095138

RESUMO

Bioactive glass (BAG) is a bone substitute that can be used in orthopaedic surgery. Following implantation, the BAG is expected to be replaced by bone via bone growth and gradual degradation of the BAG. However, the hydroxyapatite mineral forming on BAG resembles bone mineral, not providing sufficient contrast to distinguish the two in X-ray images. In this study, we co-registered coded-excitation scanning acoustic microscopy (CESAM), scanning white light interferometry (SWLI), and scanning electron microscopy with elemental analysis (Energy Dispersive X-ray Spectroscopy) (SEM-EDX) to investigate the bone growth and BAG reactions on a micron scale in a rabbit bone ex vivo. The acoustic impedance map recorded by the CESAM provides high elasticity-associated contrast to study materials and their combinations, while simultaneously producing a topography map of the sample. The acoustic impedance map correlated with the elemental analysis from SEM-EDX. SWLI also produces a topography map, but with higher resolution than CESAM. The two topography maps (CESAM and SWLI) were in good agreement. Furthermore, using information from both maps simultaneously produced by the CESAM (acoustic impedance and topography) allowed determining regions-of-interest related to bone formation around the BAG with greater ease than from either map alone. CESAM is therefore a promising tool for evaluating the degradation of bone substitutes and the bone healing process ex vivo.


Assuntos
Substitutos Ósseos , Microscopia Acústica , Animais , Coelhos , Substitutos Ósseos/química , Vidro/química , Osteogênese , Interferometria , Microscopia Eletrônica de Varredura
18.
Biomater Adv ; 153: 213521, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37356285

RESUMO

Since the introduction of the 45S5-bioactive glass (BG), numerous new BG compositions have been developed. Compared to the 45S5-BG, 1393-BG shows favorable processing properties due to its low crystallization tendency and the 1393-BG-based borosilicate 0106-B1-BG exhibits improved angiogenic properties due to its boron content. Despite their close (chemical) relationship, the biological properties of the mentioned BG composition have not yet been comparatively examined. In this study, the effects of the BGs on proliferation, viability, osteogenic differentiation, and angiogenic factor production of human bone marrow-derived mesenchymal stromal cells were assessed. Scaffolds made of the BGs were introduced in a critical-sized femur defect model in rats in order to analyze their impact on bone defect regeneration. In vitro, 1393-BG and 0106-B1-BG outperformed 45S5-BG with regard to cell proliferation and viability. 1393-BG enhanced osteogenic differentiation; 0106-B1-BG promoted angiogenic factor production. In vivo, 0106-B1-BG and 45S5-BG outperformed 1393-BG in terms of angiogenic and osteoclastic response resulting in improved bone regeneration. In conclusion, the biological properties of BGs can be significantly modified by tuning their composition. Demonstrating favorable processing properties and an equally strong in vivo bone regeneration potential as 45S5-BG, 0106-B1-BG qualifies as a basis to incorporate other bioactive ions to improve its biological properties.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Animais , Humanos , Ratos , Indutores da Angiogênese/farmacologia , Medula Óssea , Fêmur , Roedores
19.
J Mater Sci Mater Med ; 23(10): 2425-35, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22669284

RESUMO

Poly(L,DL-lactide) composites containing filler particles of bioactive glasses 45S5 and S53P4 were compared with a composite containing a slowly dissolving glass S68. The in vitro reactivity of the composites was studied in simulated body fluid, Tris-buffered solution, and phosphate buffered saline. The high processing temperature induced thermal degradation giving cavities in the composites containing 45S5 and S53P4, while good adhesion of S68 to the polymer was observed. The cavities partly affected the in vitro reactivity of the composites. The degradation of the composites containing the bioactive glasses was faster in phosphate buffered saline than in the two other solutions. Hydroxyapatite precipitation suggesting bone tissue bonding capability was observed on these two composites in all three solutions. The slower dissolution of S68 glass particles and the limited hydroxyapatite precipitation suggested that this glass has potential as a reinforcing composition with the capability to guide bone tissue growth in biodegradable polymer composites.


Assuntos
Materiais Biocompatíveis , Vidro , Próteses e Implantes , Líquidos Corporais , Varredura Diferencial de Calorimetria , Cromatografia em Gel , Durapatita/química , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Microscopia Eletrônica de Varredura
20.
J Hazard Mater ; 423(Pt A): 127057, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34523484

RESUMO

During high temperature slagging gasification of municipal solid waste (MSW), coal coke is typically used as an auxiliary fuel to maintain the high temperature in the gasifier and convert ashes into slag. Herein, biomass charcoal was utilized as a greener and more sustainable auxiliary fuel to replace the coal coke during stable and continuous gasification of MSW. Several monitoring characteristics were assessed, like operating conditions of the gasifier, influence of local MSW properties generated in Singapore, environmental impacts, and main by-products (slag, fly ash and metals). The performance data revealed that the replacement of coal coke with biomass charcoal provided significant environmental benefits. The use of biomass charcoal resulted in 78% less SO2 emissions, and 22% less generated fly ash because the lower sulfur content in biomass charcoal resulted in a 32% reduced use of sorbent for flue gas treatment. Furthermore, there was clear evidence of a 22% carbon footprint reduction due to replacing fossil fuel as auxiliary fuel. In addition, the slag characteristics demonstrated lower heavy metals leaching as compared to the incineration bottom ash generated from the conventional MSW incineration plant suggesting its great potential in the application as clean and green waste-derived material in the construction industry.


Assuntos
Carvão Vegetal , Resíduos Sólidos , Biomassa , Cinza de Carvão , Incineração , Resíduos Sólidos/análise , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA