Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 26(2): 682-696, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31596019

RESUMO

Arctic and boreal ecosystems play an important role in the global carbon (C) budget, and whether they act as a future net C sink or source depends on climate and environmental change. Here, we used complementary in situ measurements, model simulations, and satellite observations to investigate the net carbon dioxide (CO2 ) seasonal cycle and its climatic and environmental controls across Alaska and northwestern Canada during the anomalously warm winter to spring conditions of 2015 and 2016 (relative to 2010-2014). In the warm spring, we found that photosynthesis was enhanced more than respiration, leading to greater CO2 uptake. However, photosynthetic enhancement from spring warming was partially offset by greater ecosystem respiration during the preceding anomalously warm winter, resulting in nearly neutral effects on the annual net CO2 balance. Eddy covariance CO2 flux measurements showed that air temperature has a primary influence on net CO2 exchange in winter and spring, while soil moisture has a primary control on net CO2 exchange in the fall. The net CO2 exchange was generally more moisture limited in the boreal region than in the Arctic tundra. Our analysis indicates complex seasonal interactions of underlying C cycle processes in response to changing climate and hydrology that may not manifest in changes in net annual CO2 exchange. Therefore, a better understanding of the seasonal response of C cycle processes may provide important insights for predicting future carbon-climate feedbacks and their consequences on atmospheric CO2 dynamics in the northern high latitudes.


Assuntos
Ecossistema , Fotossíntese , Alaska , Regiões Árticas , Canadá , Ciclo do Carbono , Dióxido de Carbono , Mudança Climática , Estações do Ano
2.
Ecol Evol ; 5(13): 2556-71, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26257870

RESUMO

We applied a (15)N dilution technique called "Integrated Total Nitrogen Input" (ITNI) to quantify annual atmospheric N input into a peatland surrounded by intensive agricultural practices over a 2-year period. Grass species and grass growth effects on atmospheric N deposition were investigated using Lolium multiflorum and Eriophorum vaginatum and different levels of added N resulting in increased biomass production. Plant biomass production was positively correlated with atmospheric N uptake (up to 102.7 mg N pot(-1)) when using Lolium multiflorum. In contrast, atmospheric N deposition to Eriophorum vaginatum did not show a clear dependency to produced biomass and ranged from 81.9 to 138.2 mg N pot(-1). Both species revealed a relationship between atmospheric N input and total biomass N contents. Airborne N deposition varied from about 24 to 55 kg N ha(-1) yr(-1). Partitioning of airborne N within the monitor system differed such that most of the deposited N was found in roots of Eriophorum vaginatum while the highest share was allocated in aboveground biomass of Lolium multiflorum. Compared to other approaches determining atmospheric N deposition, ITNI showed highest airborne N input and an up to fivefold exceedance of the ecosystem-specific critical load of 5-10 kg N ha(-1) yr(-1).

3.
Chemosphere ; 86(6): 684-9, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22196086

RESUMO

Methane (CH(4)) formation under aerobic conditions has been intensely debated, especially since the discovery of CH(4) generation by both dried plant material and living plants. In this study we test the hypothesis that non-microbial CH(4) formation also occurs in soils. All lyophilised soil samples investigated under aerobic conditions released CH(4) at temperatures ranging from 30 to 70°C exceeding that allowing normal enzymatic activity to proceed. No emissions were observed for single mineral soil components such as quartz sand, clay mineral and iron oxide. Methane release rates from the soils investigated were found to increase both with increasing temperature and higher organic carbon content. Addition of water to dried soils increased CH(4) release rates up to 8-fold those observed with the dried material. Our results suggest the existence of a chemical process in soils that produces CH(4) under aerobic conditions, a finding which has not been hitherto reported.


Assuntos
Metano/química , Solo/química , Água/química , Aerobiose , Carbono/química , Cinética , Lignina/química , Minerais/química , Pectinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA