Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Traffic ; 21(7): 503-517, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32388897

RESUMO

The transport of Ca2+ across membranes precedes the fusion and fission of various lipid bilayers. Yeast vacuoles under hyperosmotic stress become fragmented through fission events that requires the release of Ca2+ stores through the TRP channel Yvc1. This requires the phosphorylation of phosphatidylinositol-3-phosphate (PI3P) by the PI3P-5-kinase Fab1 to produce transient PI(3,5)P2 pools. Ca2+ is also released during vacuole fusion upon trans-SNARE complex assembly, however, its role remains unclear. The effect of PI(3,5)P2 on Ca2+ flux during fusion was independent of Yvc1. Here, we show that while low levels of PI(3,5)P2 were required for Ca2+ uptake into the vacuole, increased concentrations abolished Ca2+ efflux. This was as shown by the addition of exogenous dioctanoyl PI(3,5)P2 or increased endogenous production of by the hyperactive fab1T2250A mutant. In contrast, the lack of PI(3,5)P2 on vacuoles from the kinase dead fab1EEE mutant showed delayed and decreased Ca2+ uptake. The effects of PI(3,5)P2 were linked to the Ca2+ pump Pmc1, as its deletion rendered vacuoles resistant to the effects of excess PI(3,5)P2 . Experiments with Verapamil inhibited Ca2+ uptake when added at the start of the assay, while adding it after Ca2+ had been taken up resulted in the rapid expulsion of Ca2+ . Vacuoles lacking both Pmc1 and the H+ /Ca2+ exchanger Vcx1 lacked the ability to take up Ca2+ and instead expelled it upon the addition of ATP. Together these data suggest that a balance of efflux and uptake compete during the fusion pathway and that the levels of PI(3,5)P2 can modulate which path predominates.


Assuntos
Fosfatos de Fosfatidilinositol , Fosfotransferases (Aceptor do Grupo Álcool) , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Adenosina Trifosfatases , Fosfatidilinositóis , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo
2.
Traffic ; 20(11): 841-850, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31368617

RESUMO

The accumulation of copper in organisms can lead to altered functions of various pathways and become cytotoxic through the generation of reactive oxygen species. In yeast, cytotoxic metals such as Hg+ , Cd2+ and Cu2+ are transported into the lumen of the vacuole through various pumps. Copper ions are initially transported into the cell by the copper transporter Ctr1 at the plasma membrane and sequestered by chaperones and other factors to prevent cellular damage by free cations. Excess copper ions can subsequently be transported into the vacuole lumen by an unknown mechanism. Transport across membranes requires the reduction of Cu2+ to Cu+ . Labile copper ions can interact with membranes to alter fluidity, lateral phase separation and fusion. Here we found that CuCl2 potently inhibited vacuole fusion by blocking SNARE pairing. This was accompanied by the inhibition of V-ATPase H+ pumping. Deletion of the vacuolar reductase Fre6 had no effect on the inhibition of fusion by copper. This suggests that Cu2+ is responsible for the inhibition of vacuole fusion and V-ATPase function. This notion is supported by the differential effects of chelators. The Cu2+ -specific chelator triethylenetetramine rescued fusion, whereas the Cu+ -specific chelator bathocuproine disulfonate had no effect on the inhibited fusion.


Assuntos
Adenosina Trifosfatases/metabolismo , Cobre/metabolismo , Fusão de Membrana/fisiologia , Proteínas SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Citoplasma/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Transporte Vesicular/metabolismo
3.
J Biol Chem ; 294(9): 3100-3116, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30617180

RESUMO

Eukaryotic cell homeostasis requires transfer of cellular components among organelles and relies on membrane fusion catalyzed by SNARE proteins. Inactive SNARE bundles are reactivated by hexameric N-ethylmaleimide-sensitive factor, vesicle-fusing ATPase (Sec18/NSF)-driven disassembly that enables a new round of membrane fusion. We previously found that phosphatidic acid (PA) binds Sec18 and thereby sequesters it from SNAREs and that PA dephosphorylation dissociates Sec18 from the membrane, allowing it to engage SNARE complexes. We now report that PA also induces conformational changes in Sec18 protomers and that hexameric Sec18 cannot bind PA membranes. Molecular dynamics (MD) analyses revealed that the D1 and D2 domains of Sec18 contain PA-binding sites and that the residues needed for PA binding are masked in hexameric Sec18. Importantly, these simulations also disclosed that a major conformational change occurs in the linker region between the D1 and D2 domains, which is distinct from the conformational changes that occur in hexameric Sec18 during SNARE priming. Together, these findings indicate that PA regulates Sec18 function by altering its architecture and stabilizing membrane-bound Sec18 protomers.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Ácidos Fosfatídicos/farmacologia , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteínas SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Trifosfato de Adenosina/metabolismo , Simulação de Dinâmica Molecular , Proteínas Sensíveis a N-Etilmaleimida/metabolismo , Ácidos Fosfatídicos/metabolismo , Fosforilação , Domínios Proteicos , Multimerização Proteica , Estrutura Secundária de Proteína/efeitos dos fármacos , Proteínas SNARE/química , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato
4.
J Biol Chem ; 294(46): 17168-17185, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31515268

RESUMO

The homeostasis of most organelles requires membrane fusion mediated by soluble N -ethylmaleimide-sensitive factor (NSF) attachment protein receptors (SNAREs). SNAREs undergo cycles of activation and deactivation as membranes move through the fusion cycle. At the top of the cycle, inactive cis-SNARE complexes on a single membrane are activated, or primed, by the hexameric ATPase associated with the diverse cellular activities (AAA+) protein, N-ethylmaleimide-sensitive factor (NSF/Sec18), and its co-chaperone α-SNAP/Sec17. Sec18-mediated ATP hydrolysis drives the mechanical disassembly of SNAREs into individual coils, permitting a new cycle of fusion. Previously, we found that Sec18 monomers are sequestered away from SNAREs by binding phosphatidic acid (PA). Sec18 is released from the membrane when PA is hydrolyzed to diacylglycerol by the PA phosphatase Pah1. Although PA can inhibit SNARE priming, it binds other proteins and thus cannot be used as a specific tool to further probe Sec18 activity. Here, we report the discovery of a small-molecule compound, we call IPA (inhibitor of priming activity), that binds Sec18 with high affinity and blocks SNARE activation. We observed that IPA blocks SNARE priming and competes for PA binding to Sec18. Molecular dynamics simulations revealed that IPA induces a more rigid NSF/Sec18 conformation, which potentially disables the flexibility required for Sec18 to bind to PA or to activate SNAREs. We also show that IPA more potently and specifically inhibits NSF/Sec18 activity than does N-ethylmaleimide, requiring the administration of only low micromolar concentrations of IPA, demonstrating that this compound could help to further elucidate SNARE-priming dynamics.


Assuntos
Adenosina Trifosfatases/genética , Etilmaleimida/metabolismo , Ácidos Fosfatídicos/química , Proteínas de Saccharomyces cerevisiae/genética , Bibliotecas de Moléculas Pequenas/química , Proteínas de Transporte Vesicular/genética , ATPases Associadas a Diversas Atividades Celulares/química , ATPases Associadas a Diversas Atividades Celulares/genética , Adenosina Trifosfatases/química , Fusão de Membrana/efeitos dos fármacos , Fusão de Membrana/genética , Lipídeos de Membrana/química , Lipídeos de Membrana/genética , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Simulação de Dinâmica Molecular , Proteínas Sensíveis a N-Etilmaleimida/química , Proteínas Sensíveis a N-Etilmaleimida/genética , Ácidos Fosfatídicos/antagonistas & inibidores , Proteínas SNARE/química , Proteínas SNARE/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/química , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Vacúolos/genética , Proteínas de Transporte Vesicular/química
5.
Traffic ; 18(5): 315-329, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28276191

RESUMO

Diacylglycerol (DAG) is a fusogenic lipid that can be produced through phospholipase C activity on phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2 ], or through phosphatidic acid (PA) phosphatase activity. The fusion of Saccharomyces cerevisiae vacuoles requires DAG, PA and PI(4,5)P2 , and the production of these lipids is thought to provide temporally specific stoichiometries that are critical for each stage of fusion. Furthermore, DAG and PA can be interconverted by the DAG kinase Dgk1 and the PA phosphatase Pah1. Previously we found that pah1 Δ vacuoles were fragmented, blocked in SNARE priming and showed arrested endosomal maturation. In other pathways the effects of deleting PAH1 can be compensated for by additionally deleting DGK1 ; however, deleting both genes did not rescue the pah1 Δ vacuolar defects. Deleting DGK1 alone caused a marked increase in vacuole fusion that was attributed to elevated DAG levels. This was accompanied by a gain in resistance to the inhibitory effects of PA as well as inhibitors of Ypt7 activity. Together these data show that Dgk1 function can act as a negative regulator of vacuole fusion through the production of PA at the cost of depleting DAG and reducing Ypt7 activity.


Assuntos
Diacilglicerol Quinase/metabolismo , Fluidez de Membrana/fisiologia , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Endossomos/metabolismo , Fusão de Membrana/fisiologia , Fosfatidato Fosfatase/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Ligação Proteica/fisiologia , Proteínas SNARE/metabolismo , Vacúolos
6.
Traffic ; 17(10): 1091-109, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27364524

RESUMO

Yeast vacuole fusion requires the activation of cis-SNARE complexes through priming carried out by Sec18p/N-ethylmaleimide sensitive factor and Sec17p/α-SNAP. The association of Sec18p with vacuolar cis-SNAREs is regulated in part by phosphatidic acid (PA) phosphatase production of diacylglycerol (DAG). Inhibition of PA phosphatase activity blocks the transfer of membrane-associated Sec18p to SNAREs. Thus, we hypothesized that Sec18p associates with PA-rich membrane microdomains before transferring to cis-SNARE complexes upon PA phosphatase activity. Here, we examined the direct binding of Sec18p to liposomes containing PA or DAG. We found that Sec18p preferentially bound to liposomes containing PA compared with those containing DAG by approximately fivefold. Additionally, using a specific PA-binding domain blocked Sec18p binding to PA-liposomes and displaced endogenous Sec18p from isolated vacuoles. Moreover, the direct addition of excess PA blocked the priming activity of isolated vacuoles in a manner similar to chemically inhibiting PA phosphatase activity. These data suggest that the conversion of PA to DAG facilitates the recruitment of Sec18p to cis-SNAREs. Purified vacuoles from yeast lacking the PA phosphatase Pah1p showed reduced Sec18p association with cis-SNAREs and complementation with plasmid-encoded PAH1 or recombinant Pah1p restored the interaction. Taken together, this demonstrates that regulating PA concentrations by Pah1p activity controls SNARE priming by Sec18p.


Assuntos
Adenosina Trifosfatases/metabolismo , Membranas Intracelulares/metabolismo , Fusão de Membrana/fisiologia , Ácidos Fosfatídicos/metabolismo , Proteínas SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Transporte Proteico
8.
J Biol Chem ; 291(34): 17651-63, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27365394

RESUMO

The yeast vacuole requires four SNAREs to trigger membrane fusion including the soluble Qc-SNARE Vam7. The N-terminal PX domain of Vam7 binds to the lipid phosphatidylinositol 3-phosphate (PI3P) and the tethering complex HOPS (homotypic fusion and vacuole protein sorting complex), whereas the C-terminal SNARE motif forms SNARE complexes. Vam7 also contains an uncharacterized middle domain that is predicted to be a coiled-coil domain with multiple helices. One helix contains a polybasic region (PBR) composed of Arg-164, Arg-168, Lys-172, Lys-175, Arg-179, and Lys-186. Polybasic regions are often associated with nonspecific binding to acidic phospholipids including phosphoinositides. Although the PX (phox homology) domain alone binds PI3P, we theorized that the Vam7 PBR could bind to additional acidic phospholipids enriched at fusion sites. Mutating each of the basic residues in the PBR to an alanine (Vam7-6A) led to attenuated vacuole fusion. The defective fusion of Vam7-6A was due in part to inefficient association with its cognate SNAREs and HOPS, yet the overall vacuole association of Vam7-6A was similar to wild type. Experiments testing the binding of Vam7 to specific signaling lipids showed that mutating the PBR to alanines augmented binding to PI3P. The increased binding to PI3P by Vam7-6A likely contributed to the observed wild type levels of vacuole association, whereas protein-protein interactions were diminished. PI3P binding was inhibited when the PX domain mutant Y42A was introduced into Vam7-6A to make Vam7-7A. Thus the Vam7 PBR affects PI3P binding by the PX domain and in turn affects binding to SNAREs and HOPS to support efficient fusion.


Assuntos
Fosfatos de Fosfatidilinositol/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo , Vacúolos/metabolismo , Substituição de Aminoácidos , Mutação de Sentido Incorreto , Fosfatos de Fosfatidilinositol/genética , Ligação Proteica , Domínios Proteicos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteína 25 Associada a Sinaptossoma/genética , Vacúolos/genética
9.
Microbiology (Reading) ; 160(Pt 3): 635-645, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24421404

RESUMO

The oligotrophic bacterium Caulobacter crescentus has the ability to metabolize various organic molecules, including plant structural carbohydrates, as a carbon source. The nature of ß-glucosidase (BGL)-mediated gluco-oligosaccharide degradation and nutrient transport across the outer membrane in C. crescentus was investigated. All gluco-oligosaccharides tested (up to celloheptose) supported growth in M2 minimal media but not cellulose or CM-cellulose. The periplasmic and outer membrane fractions showed highest BGL activity, but no significant BGL activity was observed in the cytosol or extracellular medium. Cells grown in cellobiose showed expression of specific BGLs and TonB-dependent receptors (TBDRs). Carbonyl cyanide 3-chlorophenylhydrazone lowered the rate of cell growth in cellobiose but not in glucose, indicating potential cellobiose transport into the cell by a proton motive force-dependent process, such as TBDR-dependent transport, and facilitated diffusion of glucose across the outer membrane via specific porins. These results suggest that C. crescentus acquires carbon from cellulose-derived gluco-oligosaccharides found in the environment by extracellular and periplasmic BGL activity and TBDR-mediated transport. This report on extracellular degradation of gluco-oligosaccharides and methods of nutrient acquisition by C. crescentus supports a broader suite of carbohydrate metabolic capabilities suggested by the C. crescentus genome sequence that until now have not been reported.


Assuntos
Caulobacter crescentus/metabolismo , Oligossacarídeos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico , Caulobacter crescentus/genética , Caulobacter crescentus/crescimento & desenvolvimento , Celobiose/metabolismo , Espaço Extracelular/metabolismo , Expressão Gênica , Transcrição Gênica , beta-Glucosidase/genética , beta-Glucosidase/metabolismo
10.
Front Cell Dev Biol ; 8: 539, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32719794

RESUMO

The Saccharomyces cerevisiae lysosome-like vacuole is a useful model for studying membrane fusion events and organelle maturation processes utilized by all eukaryotes. The vacuolar membrane is capable of forming micrometer and nanometer scale domains that can be visualized using microscopic techniques and segregate into regions with surprisingly distinct lipid and protein compositions. These lipid raft domains are liquid-ordered (L o ) like regions that are rich in sphingolipids, phospholipids with saturated acyl chains, and ergosterol. Recent studies have shown that these lipid rafts contain an enrichment of many different proteins that function in essential activities such as nutrient transport, organelle contact, membrane trafficking, and homotypic fusion, suggesting that they are biologically relevant regions within the vacuole membrane. Here, we discuss recent developments and the current understanding of sphingolipid and ergosterol function at the vacuole, the composition and function of lipid rafts at this organelle and how the distinct lipid and protein composition of these regions facilitates the biological processes outlined above.

11.
Mol Biol Cell ; 30(2): 201-208, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30427760

RESUMO

Phosphoinositides (PIs) regulate a myriad of cellular functions including membrane fusion, as exemplified by the yeast vacuole, which uses various PIs at different stages of fusion. In light of this, the effect of phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) on vacuole fusion remains unknown. PI(3,5)P2 is made by the PI3P 5-kinase Fab1 and has been characterized as a regulator of vacuole fission during hyperosmotic shock, where it interacts with the TRP Ca2+ channel Yvc1. Here we demonstrate that exogenously added dioctanoyl (C8) PI(3,5)P2 abolishes homotypic vacuole fusion. This effect was not linked to Yvc1, as fusion was equally affected using yvc1Δ vacuoles. Thus, the effects of C8-PI(3,5)P2 on fusion and fission operate through distinct mechanisms. Further testing showed that C8-PI(3,5)P2 inhibited vacuole fusion after trans-SNARE pairing. Although SNARE complex formation was unaffected, we found that C8-PI(3,5)P2 blocked outer leaflet lipid mixing. Overproduction of endogenous PI(3,5)P2 by the fab1T2250A hyperactive kinase mutant also inhibited the lipid mixing stage, bolstering the model in which PI(3,5)P2 inhibits fusion when present at elevated levels. Taken together, this work identifies a novel function for PI(3,5)P2 as a regulator of vacuolar fusion. Moreover, it suggests that this lipid acts as a molecular switch between fission and fusion.


Assuntos
Fusão de Membrana , Fosfatos de Fosfatidilinositol/farmacologia , Proteínas SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Lipídeos/química , Fusão de Membrana/efeitos dos fármacos , Simulação de Acoplamento Molecular , Mutação/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas de Saccharomyces cerevisiae/genética , Vacúolos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA