Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Carcinogenesis ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877828

RESUMO

In this study, we evaluated the effects of vitamin E δ-tocotrienol (DT3) and aspirin on Wnt signaling in human colon cancer stem cells (CCSCs) and in the prevention of adenoma formation in APCmin/+ mice. We found that knockdown of the adenomatous polyposis coli (APC) gene led to subsequent activation of Wnt signaling in colon epithelial cells (NCM460-APCsiRNA) and induction of ß-catenin and its downstream target proteins c-MYC, cyclin D1, and survivin. When aspirin and DT3 were combined, cell growth and survival were inhibited and apoptosis was induced in colon epithelial cells and in CCSCs. However, DT3 and/or aspirin had little or no effect on control normal colon epithelial cells (NCM460-NCsiRNA). The induction of apoptosis was directly related to activation of caspase 8 and cleavage of BID to truncated BID. In addition, DT3 and/or aspirin-induced apoptosis was associated with cleaved PARP, elevated levels of cytosolic cytochrome c and BAX, and depletion of anti-apoptotic protein BCl-2 in CCSCs. The combination of aspirin and DT3 inhibited the self-renewal capacity, Wnt/ß-catenin receptor activity, and expression of ß-catenin and its downstream targets c-MYC, cyclin D1 and survivin in CCSCs. We also found that treatment with DT3 alone or combined with aspirin significantly inhibited intestinal adenoma formation and Wnt/ ß-catenin signaling and induced apoptosis, compared to vehicle, in APCmin/+ mice. Our study demonstrated a rationale for further investigation of the combination of DT3 and aspirin for colorectal cancer prevention and therapy.

2.
Cancer Cell Int ; 19: 189, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31367187

RESUMO

BACKGROUND: Vitamin E δ-tocotrienol (VEDT), a vitamin E compound isolated from sources such as palm fruit and annatto beans, has been reported to have cancer chemopreventive and therapeutic effects. METHODS: We report a novel function of VEDT in augmenting tumor necrosis factor-related apoptosis-inducing ligand- (TRAIL-) induced apoptosis in pancreatic cancer cells. The effects of VEDT were shown by its ability to trigger caspase-8-dependent apoptosis in pancreatic cancer cells. RESULTS: When combined with TRAIL, VEDT significantly augmented TRAIL-induced apoptosis of pancreatic cancer cells. VEDT decreased cellular FLICE inhibitory protein (c-FLIP) levels without consistently modulating the expression of decoy death receptors 1, 2, 3 or death receptors 4 and 5. Enforced expression of c-FLIP substantially attenuated VEDT/TRAIL-induced apoptosis. Thus, c-FLIP reduction plays an important part in mediating VEDT/TRAIL-induced apoptosis. Moreover, VEDT increased c-FLIP ubiquitination and degradation but did not affect its transcription, suggesting that VEDT decreases c-FLIP levels through promoting its degradation. Of note, degradation of c-FLIP and enhanced TRAIL-induced apoptosis in pancreatic cancer cells were observed only with the anticancer bioactive vitamin E compounds δ-, γ-, and ß-tocotrienol but not with the anticancer inactive vitamin E compounds α-tocotrienol and α-, ß-, γ-, and δ-tocopherol. CONCLUSIONS: c-FLIP degradation is a key event for death receptor-induced apoptosis by anticancer bioactive vitamin E compounds in pancreatic cancer cells. Moreover, VEDT augmented TRAIL inhibition of pancreatic tumor growth and induction of apoptosis in vivo. Combination therapy with TRAIL agonists and bioactive vitamin E compounds may offer a novel strategy for pancreatic cancer intervention.

3.
Am J Pathol ; 186(10): 2761-8, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27521996

RESUMO

Human cellular apoptosis susceptibility (chromosomal segregation 1-like, CSE1L) gene plays a role in nuclear-to-cytoplasm transport and chromosome segregation during mitosis, cellular proliferation, and apoptosis. CSE1L is involved in colon carcinogenesis. CSE1L gene expression was assessed with three data sets using Affymetrix U133 + gene chips on normal human colonic mucosa (NR), adenomas (ADs), and colorectal carcinoma (CRC). CSE1L protein expression in CRC, AD, and NR from the same patients was measured by immunohistochemistry using a tissue microarray. We evaluated CSE1L expression in CRC cells (HCT116, SW480, and HT29) and its biological functions. CSE1L mRNA was significantly increased in all AD and CRC compared with NR (P < 0.001 and P = 0.02, respectivly). We observed a change in CSE1L staining intensity and cellular localization by immunohistochemistry. CSE1L was significantly increased during the transition from AD to CRC when compared with NR in a CRC tissue microarray (P = 0.01 and P < 0.001). HCT116, SW480, and HT29 cells also expressed CSE1L protein. CSE1L knockdown by shRNA inhibited protein, resulting in decreased cell proliferation, reduced colony formation in soft agar, and induction of apoptosis. CSE1L protein is expressed early and across all stages of CRC development. shRNA knockdown of CSE1L was associated with inhibition of tumorigenesis in CRC cells. CSE1L may represent a potential target for treatment of CRC.


Assuntos
Adenoma/patologia , Carcinogênese/genética , Proteína de Suscetibilidade a Apoptose Celular/genética , Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica , Adenoma/genética , Adenoma/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Apoptose/genética , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proliferação de Células , Proteína de Suscetibilidade a Apoptose Celular/metabolismo , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Citoplasma/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transporte Proteico , Análise Serial de Tecidos , Adulto Jovem
4.
Carcinogenesis ; 34(4): 858-63, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23302291

RESUMO

The highly lethal nature of pancreatic cancer and the increasing recognition of high-risk individuals have made research into chemoprevention a high priority. Here, we tested the chemopreventive activity of δ-tocotrienol, a bioactive vitamin E derivative extracted from palm fruit, in the LSL-Kras(G12D/+);Pdx-1-Cre pancreatic cancer mouse model. At 10 weeks of age, mice (n = 92) were randomly allocated to three groups: (i) no treatment; (ii) vehicle and (iii) δ-tocotrienol (200mg/kg × 2/day, PO). Treatment was continued for 12 months. Mice treated with δ-tocotrienol showed increased median survival from the onset of treatment (11.1 months) compared with vehicle-treated mice (9.7 months) and non-treated mice (8.5 months; P < 0.025). Importantly, none of the mice treated with δ-tocotrienol harbored invasive cancer compared with 10% and 8% in vehicle-treated and non-treated mice, respectively. Furthermore, δ-tocotrienol treatment also resulted in significant suppression of mouse pancreatic intraepithelial neoplasm (mPanIN) progression compared with vehicle-treated and non-treated mice: mPanIN-1: 47-50% (P < 0.09), mPanIN-2: 6-11% (P < 0.001), mPanIN-3: 3-15% (P < 0.001) and invasive cancer: 0-10% (P < 0.001). δ-Tocotrienol treatment inhibited mutant Kras-driven pathways such as MEK/ERK, PI3K/AKT and NF-kB/p65, as well as Bcl-xL and induced p27. δ-Tocotrienol also induced biomarkers of apoptosis such as Bax and activated caspase 3 along with an increase in plasma levels of CK18. In summary, δ-tocotrienol's ability to interfere with oncogenic Kras pathways coupled with the observed increase in median survival and significant delay in PanIN progression highlights the chemopreventative potential of δ-tocotrienol and warrants further investigation of this micronutrient in individuals at high risk for pancreatic cancer.


Assuntos
Carcinoma in Situ/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Vitamina E/análogos & derivados , Animais , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais , Carcinoma in Situ/mortalidade , Carcinoma in Situ/prevenção & controle , Carcinoma Ductal Pancreático/mortalidade , Carcinoma Ductal Pancreático/prevenção & controle , Caspase 3/efeitos dos fármacos , Modelos Animais de Doenças , Progressão da Doença , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Genótipo , Proteínas de Homeodomínio/genética , Camundongos , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/prevenção & controle , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/efeitos dos fármacos , Proteínas Proto-Oncogênicas p21(ras)/genética , Sobrevida , Transativadores/genética , Fator de Transcrição RelA/antagonistas & inibidores , Fator de Transcrição RelA/metabolismo , Vitamina E/farmacologia , Proteína bcl-X/antagonistas & inibidores , Proteína bcl-X/metabolismo
5.
Am J Physiol Renal Physiol ; 302(1): F141-9, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21957179

RESUMO

Angiotensin-converting enzyme (ACE) inhibitors ameliorate the progression of renal disease. In combination with vitamin D receptor activators, they provide additional benefits. In the present study, uremic (U) rats were treated as follows: U+vehicle (UC), U+enalapril (UE; 25 mg/l in drinking water), U+paricalcitol (UP; 0.8 µg/kg ip, 3 × wk), or U+enalapril+paricalcitol (UEP). Despite hypertension in UP rats, proteinuria decreased by 32% vs. UC rats. Enalapril alone, or in combination with paricalcitol, further decreased proteinuria (≈70%). Glomerulosclerosis and interstitial infiltration increased in UC rats. Paricalcitol and enalapril inhibited this. The increase in cardiac atrial natriuretic peptide (ANP) seen in UC rats was significantly decreased by paricalcitol. Enalapril produced a more dramatic reduction in ANP. Renal oxidative stress plays a critical role in inflammation and progression of sclerosis. The marked increase in p22(phox), a subunit of NADPH oxidase, and decrease in endothelial nitric oxide synthase were inhibited in all treated groups. Cotreatment with both compounds inhibited the uremia-induced increase in proinflammatory inducible nitric oxide synthase (iNOS) and glutathione peroxidase activity better than either compound alone. Glutathione reductase was also increased in UE and UP rats vs. UC. Kidney 4-hydroxynonenal was significantly increased in the UC group compared with the normal group. Combined treatment with both compounds significantly blunted this increase, P < 0.05, while either compound alone had no effect. Additionally, the expression of Mn-SOD was increased and CuZn-SOD decreased by uremia. This was ameliorated in all treatment groups. Cotreatment with enalapril and paricalcitol had an additive effect in increasing CuZn-SOD expression. In conclusion, like enalapril, paricalcitol alone can improve proteinuria, glomerulosclerosis, and interstitial infiltration and reduce renal oxidative stress. The effects of paricalcitol may be amplified when an ACE inhibitor is added since cotreatment with both compounds seems to have an additive effect on ameliorating uremia-induced changes in iNOS and CuZn-SOD expression, peroxidase activity, and renal histomorphometry.


Assuntos
Enalapril/uso terapêutico , Ergocalciferóis/uso terapêutico , Glomerulonefrite/tratamento farmacológico , Proteinúria/tratamento farmacológico , Receptores de Calcitriol/efeitos dos fármacos , Aldeídos/metabolismo , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Fator Natriurético Atrial/efeitos dos fármacos , Feminino , Rim/efeitos dos fármacos , NADPH Oxidases/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteinúria/metabolismo , Ratos , Superóxido Dismutase/metabolismo , Uremia/metabolismo
6.
Bull Environ Contam Toxicol ; 89(4): 699-703, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22936015

RESUMO

Transport processes are the hallmark of functioning kidney. Various nephrotoxicants disrupt the transport processes to manifest nephrotoxicity. Of several nephrotoxicants, mercuric chloride (HgCl(2)) depletes the reduced glutathione (GSH) in kidney and has been observed to affect the in vitro p-aminohippurate (PAH) transport by basolateral (BL) membrane vesicles. The role of renal nonprotein sulfhydryls such as, reduced GSH has been demonstrated to affect the PAH transport by BL membrane vesicles. The role of protein sulfhydryls in transport process of PAH by BL membrane is not known. Due to mercury mediated effects on sulfhydryls, the effects of protein-sulfhydryls (-SH) modifying reagents in the current study were investigated on PAH transport by BL membrane. It was observed that modification of -SH by p-chloromercuribenzoate sulphate (pCMBS), and mercuric chloride (HgCl(2)) decreased while recovering the protein -SH with dithiothreitol treatment provided protection against the effects of pCMBS, and HgCl(2) on PAH transport by BL membrane vesicles.


Assuntos
Substâncias Perigosas/toxicidade , Rim/efeitos dos fármacos , Compostos de Sulfidrila/toxicidade , Animais , Transporte Biológico/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Glutationa/metabolismo , Rim/metabolismo , Rim/ultraestrutura , Ratos , Ácido p-Aminoipúrico/metabolismo
7.
Cancers (Basel) ; 14(15)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35892872

RESUMO

Pancreatic cancer (PC) is a deadly disease with a grim prognosis. Pancreatic tumor derived factors (TDF) contribute to the induction of an immunosuppressive tumor microenvironment (TME) that impedes the effectiveness of immunotherapy. PC-induced microRNA-155 (miRNA-155) represses expression of Src homology 2 (SH2) domain-containing Inositol 5'-phosphatase-1 (SHIP-1), a regulator of myeloid cell development and function, thus impacting anti-tumor immunity. We recently reported that the bioflavonoid apigenin (API) increased SHIP-1 expression which correlated with the expansion of tumoricidal macrophages (TAM) and improved anti-tumor immune responses in the TME of mice with PC. We now show that API transcriptionally regulates SHIP-1 expression via the suppression of miRNA-155, impacting anti-tumor immune responses in the bone marrow (BM) and TME of mice with PC. We discovered that API reduced miRNA-155 in the PC milieu, which induced SHIP-1 expression. This promoted the restoration of myelopoiesis and increased anti-tumor immune responses in the TME of heterotopic, orthotopic and transgenic SHIP-1 knockout preclinical mouse models of PC. Our results suggest that manipulating SHIP-1 through miR-155 may assist in augmenting anti-tumor immune responses and aid in the therapeutic intervention of PC.

8.
Toxicol Rep ; 9: 521-533, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371924

RESUMO

The incidence of hypertension with diabetes mellitus (DM) as a co-morbid condition is on the rise worldwide. In 2000, an estimated 972 million adults had hypertension, which is predicted to grow to 1.56 billion by 2025. Hypertension often leads to diabetes mellitus that strongly puts the patients at an increased risk of cardiovascular, kidney, and/or atherosclerotic diseases. Hypertension has been identified as a major risk factor for the development of diabetes; patients with hypertension are at two-to-three-fold higher risk of developing diabetes than patients with normal blood pressure (BP). Causes for the increase in hypertension and diabetes are not well understood, environmental factors (e.g., exposure to environmental toxicants like heavy metals, organic solvents, pesticides, alcohol, and urban lifestyle) have been postulated as one of the reasons contributing to hypertension and cardiovascular diseases (CVD). The mechanism of action(s) of these toxicants in developing hypertension and CVDs is not well defined. Research studies have linked hypertension with the chronic consumption of alcohol and exposure to metals like lead, mercury, and arsenic have also been linked to hypertension and CVD. Workers chronically exposed to styrene have a higher incidence of CVD. Recent studies have demonstrated that exposure to particulate matter (PM) in diesel exhaust and urban air contributes to increased CVD and mortality. In this review, we have imparted the role of environmental toxicants such as heavy metals, organic pollutants, PM, alcohol, and some drugs in hypertension and CVD along with possible mechanisms and limitations in extrapolating animal data to humans.

9.
Sci Rep ; 11(1): 2185, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33500430

RESUMO

The activation and growth of tumour-initiating cells with stem-like properties in distant organs characterize colorectal cancer (CRC) growth and metastasis. Thus, inhibition of colon cancer stem cell (CCSC) growth holds promise for CRC growth and metastasis prevention. We and others have shown that farnesyl dimethyl chromanol (FDMC) inhibits cancer cell growth and induces apoptosis in vitro and in vivo. We provide the first demonstration that FDMC inhibits CCSC viability, survival, self-renewal (spheroid formation), pluripotent transcription factors (Nanog, Oct4, and Sox2) expression, organoids formation, and Wnt/ß-catenin signalling, as evidenced by comparisons with vehicle-treated controls. In addition, FDMC inhibits CCSC migration, invasion, inflammation (NF-kB), angiogenesis (vascular endothelial growth factor, VEGF), and metastasis (MMP9), which are critical tumour metastasis processes. Moreover, FDMC induced apoptosis (TUNEL, Annexin V, cleaved caspase 3, and cleaved PARP) in CCSCs and CCSC-derived spheroids and organoids. Finally, in an orthotopic (cecum-injected CCSCs) xenograft metastasis model, we show that FDMC significantly retards CCSC-derived tumour growth (Ki-67); inhibits inflammation (NF-kB), angiogenesis (VEGF and CD31), and ß-catenin signalling; and induces apoptosis (cleaved PARP) in tumour tissues and inhibits liver metastasis. In summary, our results demonstrate that FDMC inhibits the CCSC metastatic phenotype and thereby supports investigating its ability to prevent CRC metastases.


Assuntos
Cromanos/farmacologia , Neoplasias Colorretais/patologia , Células-Tronco Neoplásicas/patologia , Células 3T3 , Animais , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Autorrenovação Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Neoplasias Colorretais/irrigação sanguínea , Feminino , Inflamação/patologia , Camundongos , Camundongos Nus , Invasividade Neoplásica , Metástase Neoplásica , Células-Tronco Neoplásicas/efeitos dos fármacos , Neovascularização Patológica/patologia , Organoides/efeitos dos fármacos , Organoides/patologia , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/patologia , Fatores de Transcrição/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo
10.
Immunol Med ; 44(3): 159-174, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33164702

RESUMO

Protein kinase CK2, formally known as casein kinase II, is ubiquitously expressed and highly conserved serine/threonine or tyrosine kinase enzyme that regulates diverse signaling pathways responsible for cellular processes (i.e., cell proliferation and apoptosis) via interactions with over 500 known substrates. The enzyme's physiological interactions and cellular functions have been widely studied, most notably in the blood and solid malignancies. CK2 has intrinsic role in carcinogenesis as overexpression of CK2 subunits (α, α`, and ß) and deregulation of its activity have been linked to various forms of cancers. CK2 also has extrinsic role in cancer stroma or in the tumor microenvironment (TME) including the immune cells. However, very few research studies have focused on extrinsic role of CK2 in regulating immune responses as a therapeutic alternative for cancer. The following review discusses CK2's regulation of key signaling events [Nuclear factor kappa B (NF-κB), Janus kinase/signal transducer and activators of transcription (JAK/STAT), Hypoxia inducible factor-1alpha (HIF-1α), Cyclooygenase-2 (COX-2), Extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK), Notch, Protein kinase B/AKT, Ikaros and Wnt] that can influence the development and function of immune cells in cancer. Potential clinical trials using potent CK2 inhibitors will facilitate and improve the treatment of human malignancies.


Assuntos
Caseína Quinase II , Neoplasias , Caseína Quinase II/genética , Caseína Quinase II/metabolismo , Humanos , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Microambiente Tumoral
11.
Front Genet ; 12: 758733, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858475

RESUMO

Epigenetic regulation involves reversible changes in histones and DNA modifications that can be inherited without any changes in the DNA sequence. Dysregulation of normal epigenetic processes can lead to aberrant gene expression as observed in many diseases, notably cancer. Recent insights into the mechanisms of DNA methylation, histone modifications, and non-coding RNAs involved in altered gene expression profiles of tumor cells have caused a paradigm shift in the diagnostic and therapeutic approaches towards cancer. There has been a surge in search for compounds that could modulate the altered epigenetic landscape of tumor cells, and to exploit their therapeutic potential against cancers. Flavonoids are naturally occurring phenol compounds which are abundantly found among phytochemicals and have potentials to modulate epigenetic processes. Knowledge of the precise flavonoid-mediated epigenetic alterations is needed for the development of epigenetics drugs and combinatorial therapeutic approaches against cancers. This review is aimed to comprehensively explore the epigenetic modulations of flavonoids and their anti-tumor activities.

12.
Clin Cancer Res ; 27(14): 4012-4024, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33879459

RESUMO

PURPOSE: Among human cancers that harbor mutant (mt) KRas, some, but not all, are dependent on mt KRas. However, little is known about what drives KRas dependency. EXPERIMENTAL DESIGN: Global phosphoproteomics, screening of a chemical library of FDA drugs, and genome-wide CRISPR/Cas9 viability database analysis were used to identify vulnerabilities of KRas dependency. RESULTS: Global phosphoproteomics revealed that KRas dependency is driven by a cyclin-dependent kinase (CDK) network. CRISPR/Cas9 viability database analysis revealed that, in mt KRas-driven pancreatic cancer cells, knocking out the cell-cycle regulators CDK1 or CDK2 or the transcriptional regulators CDK7 or CDK9 was as effective as knocking out KRas. Furthermore, screening of a library of FDA drugs identified AT7519, a CDK1, 2, 7, and 9 inhibitor, as a potent inducer of apoptosis in mt KRas-dependent, but not in mt KRas-independent, human cancer cells. In vivo AT7519 inhibited the phosphorylation of CDK1, 2, 7, and 9 substrates and suppressed growth of xenografts from 5 patients with pancreatic cancer. AT7519 also abrogated mt KRas and mt p53 primary and metastatic pancreatic cancer in three-dimensional (3D) organoids from 2 patients, 3D cocultures from 8 patients, and mouse 3D organoids from pancreatic intraepithelial neoplasia, primary, and metastatic tumors. CONCLUSIONS: A link between CDK hyperactivation and mt KRas dependency was uncovered and pharmacologically exploited to abrogate mt KRas-driven pancreatic cancer in highly relevant models, warranting clinical investigations of AT7519 in patients with pancreatic cancer.


Assuntos
Quinases Ciclina-Dependentes/fisiologia , Neoplasias Pancreáticas/etiologia , Proteínas Proto-Oncogênicas p21(ras)/fisiologia , Animais , Quinases Ciclina-Dependentes/metabolismo , Humanos , Camundongos , Fosforilação , Proteoma
13.
Am J Nephrol ; 32(4): 296-304, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20720404

RESUMO

AIMS: This study investigated the protective effect of vitamin D analog paricalcitol combined with angiotensin-converting enzyme inhibitor (enalapril) on aortic oxidative injury in atherosclerotic mice. METHODS: Female mice were treated for 16 weeks as follows: (1) ApoE deficient + vehicle, (2) ApoE deficient + paricalcitol (200 ng 3 times a week), (3) ApoE deficient + enalapril (30 mg/l in drinking water), (4) ApoE deficient + paricalcitol + enalapril, and (5) wild-type controls. RESULTS: ApoE-deficient mice developed hypertension which was prevented by enalapril or enalapril + paricalcitol treatment but not by paricalcitol treatment. Histology showed atherosclerotic plaque in the aorta of ApoE-deficient mice which was prevented by paricalcitol, enalapril, and paricalcitol + enalapril treatments. Aortic malondialdehyde levels, NADPH oxidase subunit p22(phox), manganese-superoxide dismutase (Mn-SOD), inducible nitric oxide synthase, monocyte chemoattaractant protein-1, tumor necrosis factor (TNF)-α, and cyclooxygenase-2 protein expressions increased, whereas glutathione levels, CuZn-SOD, and endothelial protein expressions decreased in ApoE-deficient mice compared to controls. Treatment with paricalcitol and enalapril alone or in combination protected the inflammatory and oxidative endothelial injury of the aorta in atherosclerotic mice. CONCLUSION: Combination therapy affords greater protection against aortic inflammatory and oxidative injury in atherosclerosis than monotherapy.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Aorta/fisiopatologia , Aterosclerose/prevenção & controle , Enalapril/uso terapêutico , Ergocalciferóis/uso terapêutico , Vitaminas/uso terapêutico , Análise de Variância , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Aorta/metabolismo , Aorta/patologia , Apolipoproteínas E/deficiência , Pressão Sanguínea/efeitos dos fármacos , Quimiocina CCL2/metabolismo , Ciclo-Oxigenase 2/metabolismo , Enalapril/farmacologia , Endotélio/metabolismo , Ergocalciferóis/farmacologia , Feminino , Glutationa/metabolismo , Malondialdeído/metabolismo , Camundongos , Camundongos Knockout , NADPH Oxidases/metabolismo , Óxido Nítrico Sintase/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Vitaminas/farmacologia
14.
Indian J Exp Biol ; 48(7): 642-50, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20929049

RESUMO

Organophosphorus pesticide poisoning causes tens of thousands of deaths each year across the world. Poisoning includes acute cholinergic crisis as a result of AChE inhibition, intermediate syndrome (IMS) due to neuromuscular necrosis and organophosphate-induced delayed neuropathy (OPIDN) due to inhibition of neuropathy target esterase (NTE). Standard treatment for acute poisoning involves administration of intravenous atropine, oxime 2-PAM to counter AChE inhibition and diazepam for CNS protection. However clinical trials showed ineffectiveness of the standard therapy regimen. Although new oximes that can reactivate both peripheral and cerebral AChE and other prophylactic agents such as human serum butyrylcholinesterase (Hu BChE), sodium bicarbonate, huperzine A (a reversible ChE inhibitor) with imidazenil (a GABAA receptor modulator) have been proved effective in animal models, systematic clinical trials in patients are warranted. For IMS which is non-responsive to standard therapy, supportive therapy specifically artificial respiration followed by recovery is indicated. For OPIDN which has a different target (NTE) than AChE, standard therapy is ineffective. However neuroprotective drugs such as corticosteroids proved partially effective. Pretreatment with protease inhibitor PMSF has been shown to protect the aging of NTE and prevent the development of delayed symptoms in hens. Since the biology of NTE is being explored, new pharmacological agents should be developed in future. OP pesticide poisoning is a serious condition that needs rapid diagnosis and treatment. Since respiratory failure is the major reason for mortality, artificial respiration, careful monitoring, appropriate treatment and early recognition of OP pesticide poisoning may decrease the mortality rate among these patients.


Assuntos
Antídotos/uso terapêutico , Intoxicação por Organofosfatos , Praguicidas/intoxicação , Intoxicação/tratamento farmacológico , Humanos
15.
Cancers (Basel) ; 12(12)2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291556

RESUMO

Pancreatic cancer (PC) has an extremely poor prognosis due to the expansion of immunosuppressive myeloid-derived suppressor cells (MDSC) and tumor-associated macrophages (TAM) in the inflammatory tumor microenvironment (TME), which halts the recruitment of effector immune cells and renders immunotherapy ineffective. Thus, the identification of new molecular targets that can modulate the immunosuppressive TME is warranted for PC intervention. Src Homology-2 (SH2) domain-containing Inositol 5'-Phosphatase-1 (SHIP-1) is a lipid signaling protein and a regulator of myeloid cell development and function. Herein, we used the bioflavonoid apigenin (API) to reduce inflammation in different PC models. Wild type mice harboring heterotopic or orthotopic PC were treated with API, which induced SHIP-1 expression, reduced inflammatory tumor-derived factors (TDF), increased the proportion of tumoricidal macrophages and enhanced anti-tumor immune responses, resulting in a reduction in tumor burden compared to vehicle-treated PC mice. In contrast, SHIP-1-deficient mice exhibited an increased tumor burden and displayed augmented proportions of pro-tumor macrophages. These results provide further support for the importance of SHIP-1 expression in promoting pro-tumor macrophage development in the pancreatic TME. Our findings suggest that agents augmenting SHIP-1 expression may provide novel therapeutic options for the treatment of PC.

16.
Transl Oncol ; 13(2): 481-489, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32004866

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease with an overall median 5-year survival rate of 8%. This poor prognosis is because of the development of resistance to chemotherapy and radiation therapy and lack of effective targeted therapies. IκB kinase enhancer (IKBKE) overexpression was previously implicated in chemoresistance. Because IKBKE is frequently elevated in PDAC and IKBKE inhibitors are currently in clinical trials, we evaluated IKBKE as a therapeutic target in this disease. Depletion of IKBKE was found to significantly reduce PDAC cell survival, growth, cancer stem cell renewal, and cell migration and invasion. Notably, IKBKE inhibitor CYT387 and IKBKE knockdown dramatically activated the MAPK pathway. Phospho-RTK array analyses showed that IKBKE inhibition leads to rapid upregulation of ErbB3 and IGF-1R expression, which results in MAPK-ERK pathway activation-thereby limiting the efficacy of IKBKE inhibitors. Furthermore, IKBKE inhibition leads to stabilization of FOXO3a, which is required for RTK upregulation on IKBKE inhibition. Finally, we demonstrated that the IKBKE inhibitors synergize with the MEK inhibitor trametinib to significantly induce cell death and inhibit tumor growth and liver metastasis in an orthotopic PDAC mouse model.

17.
Am J Nephrol ; 29(5): 465-72, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19033720

RESUMO

AIMS: This study investigated the protective effect of the angiotensin-converting enzyme inhibitor, enalapril, and the vitamin D analog, paricalcitol, alone or in combination, on cardiac oxidative stress in uremic rats. METHODS: Rats were made uremic by 5/6 nephrectomy and treated for 4 months as follows: (1) uremic + vehicle (n = 11); (2) uremic + enalapril (30 mg/l in drinking water, n = 13); (3) uremic + paricalcitol (200 ng 3x week, n = 6); (4) uremic + enalapril + paricalcitol (n = 14), and (5) controls (n = 6). RESULTS: Cardiac NADPH oxidase activity increased by 300% in uremic rats compared to normal controls. Treatment with enalapril, paricalcitol or the combination of the two protected uremic rats from cardiac oxidative stress by inhibiting enzyme activity. Cardiac malondialdehyde (MDA) levels were significantly increased in uremic rats compared to normal controls. Only the combination therapy inhibited the increase in MDA levels in uremic rats. Cardiac glutathione was significantly reduced in uremic rats compared to normal controls. Enalapril, paricalcitol or the two in combination all protected against this reduction in glutathione. Cardiac copper/zinc superoxide dismutase (CuZn-SOD) activity decreased whereas manganese (Mn-SOD) activity increased in uremic rats compared to controls. Both mono and combination therapies ameliorated the alterations in cardiac SOD activity seen in uremic rats. CONCLUSION: Enalapril, paricalcitol and their combined therapy afford protection against cardiac oxidative stress in uremia.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Enalapril/uso terapêutico , Ergocalciferóis/uso terapêutico , Cardiopatias/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Uremia/complicações , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Antioxidantes/metabolismo , Quimioterapia Combinada , Enalapril/farmacologia , Ergocalciferóis/farmacologia , Feminino , Cardiopatias/etiologia , Cardiopatias/metabolismo , Malondialdeído/metabolismo , NADPH Oxidases/metabolismo , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase/metabolismo
18.
Pharmacology ; 83(3): 157-63, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19142032

RESUMO

Tocotrienols are natural vitamin E compounds that are known to have a neuroprotective effect at nanomolar concentration and anti-carcinogenic effect at micromolar concentration. In this report, we investigated the pharmacokinetics, tumor and pancreatic tissue levels, and toxicity of delta-tocotrienol in mice because of its anti-tumor activity against pancreatic cancer. Following a single oral administration of delta-tocotrienol at 100 mg/kg, the peak plasma concentration (C(max)) was 57 +/- 5 micromol/l, the time required to reach peak plasma concentration (T(max)) was 2 h and plasma half-life (t(1/2)) was 3.5 h. The delta-tocotrienol was cleared from plasma and liver within 24 h, but delayed from the pancreas. When mice were fed delta-tocotrienol for 6 weeks, the concentration in tumor tissue was 41 +/- 3.5 nmol/g. This concentration was observed with the oral dose (100 mg/kg) of delta-tocotrienol which inhibited tumor growth by 80% in our previous studies. Interestingly, delta-tocotrienol was 10-fold more concentrated in the pancreas than in the tumor. We observed no toxicity due to delta-tocotrienol as mice gained normal weight with no histopathological changes in tissues. Our data suggest that bioactive levels of delta-tocotrienol can be achieved in the pancreas following oral administration and supports its clinical investigation in pancreatic cancer.


Assuntos
Pâncreas/metabolismo , Neoplasias Pancreáticas/metabolismo , Vitamina E/análogos & derivados , Administração Oral , Animais , Linhagem Celular Tumoral , Feminino , Meia-Vida , Fígado/metabolismo , Camundongos , Camundongos Nus , Transplante de Neoplasias , Neoplasias Pancreáticas/prevenção & controle , Distribuição Tecidual , Transplante Heterólogo , Vitamina E/administração & dosagem , Vitamina E/sangue , Vitamina E/farmacocinética , Vitamina E/toxicidade
19.
Cancer Prev Res (Phila) ; 12(6): 357-366, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30940630

RESUMO

This study evaluated the preclinical activity of δ-tocotrienol (DT3), a bioactive form of vitamin E, in the inhibition of colorectal cancer growth and development in vitro and in vivo DT3 is the most bioactive isomer of vitamin E in inhibiting growth of colorectal cancer cells. However, it had little effect on the proliferation of normal colon mucosal cells NCM460. In HCT-116 and SW-620 colorectal cancer cells, DT3 (50 µmol/L) significantly inhibited malignant transformation (P < 0.02, P < 0.001), cell migration (P < 0.02, P < 0.05), and invasion (P < 0.05, P < 0.01) compared with vehicle. DT3 inhibited markers for epithelial (E-cadherin) to mesenchymal (vimentin) transition, metastasis (matrix metalloproteinase 9), angiogenesis VEGF, inflammation (NF-κB), and Wnt signaling (ß-catenin) compared with vehicle in colorectal cancer cells. DT3 induced apoptosis selectively in colorectal cancer cells (SW-620 cells, HCT-116 cells, and HT-29) without affecting the normal colon cells. In the azoxymethane-induced colorectal carcinogenesis model in rats, DT3 (200 mg/kg orally twice a day) for 20 weeks significantly inhibited colorectal polyps by 70% and colorectal cancer by almost 99% compared with the vehicle treatment group (P < 0.02, P < 0.001), and the cancer inhibition effect was more potent than sulindac (50%). Taken together, these data demonstrate that DT3 is a potential chemopreventive agent in colorectal cancer, warranting further investigation into its clinical use in the prevention and treatment of colorectal cancer.


Assuntos
Azoximetano/toxicidade , Carcinogênese/efeitos dos fármacos , Neoplasias do Colo/prevenção & controle , Vitamina E/análogos & derivados , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Apoptose , Carcinogênese/metabolismo , Carcinogênese/patologia , Carcinógenos/toxicidade , Movimento Celular , Proliferação de Células , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Feminino , Ratos , Ratos Endogâmicos F344 , Células Tumorais Cultivadas , Vitamina E/farmacologia
20.
AIDS Res Hum Retroviruses ; 23(8): 1004-7, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17725417

RESUMO

Oxidative stress is well documented in HIV infection, but the effect of concomitant substance abuse is largely unknown. We studied oxidative stress in our macaque model of morphine abuse and AIDS. In plasma, we found an approximately 50% decrease in catalase activity with morphine dependence that was exacerbated by infection in rapid progressors. Superoxide dismutase was decreased by a similar degree, but only in the presence of both morphine and viral infection. The loss of these antioxidant systems was coincident with significantly increased plasma malondialdehyde upon viral infection that displayed a synergistic increase in conjunction with morphine and rapid disease.


Assuntos
HIV , Dependência de Morfina/complicações , Estresse Oxidativo , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Vírus da Imunodeficiência Símia , Animais , Contagem de Linfócito CD4 , Catalase/sangue , Progressão da Doença , Macaca , Malondialdeído/sangue , Síndrome de Imunodeficiência Adquirida dos Símios/complicações , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Superóxido Dismutase/sangue , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA