Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Respir Physiol Neurobiol ; 326: 104282, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38782084

RESUMO

Duchenne muscular dystrophy (DMD) is the most common X-linked disease. DMD is caused by a lack of dystrophin, a critical structural protein in striated muscle. Dystrophin deficiency leads to inflammation, fibrosis, and muscle atrophy. Boys with DMD have progressive muscle weakness within the diaphragm that results in respiratory failure in the 2nd or 3rd decade of life. The most common DMD mouse model - the mdx mouse - is not sufficient for evaluating genetic medicines that specifically target the human DMD (hDMD) gene sequence. Therefore, a novel transgenic mouse carrying the hDMD gene with an exon 52 deletion was created (hDMDΔ52;mdx). We characterized the respiratory function and pathology in this model using whole body plethysmography, histology, and immunohistochemistry. At 6-months-old, hDMDΔ52;mdx mice have reduced maximal respiration, neuromuscular junction pathology, and fibrosis throughout the diaphragm, which worsens at 12-months-old. In conclusion, the hDMDΔ52;mdx exhibits moderate respiratory pathology, and serves as a relevant animal model to study the impact of novel genetic therapies, including gene editing, on respiratory function.


Assuntos
Modelos Animais de Doenças , Camundongos Transgênicos , Distrofia Muscular de Duchenne , Animais , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/fisiopatologia , Camundongos , Humanos , Masculino , Distrofina/genética , Distrofina/deficiência , Camundongos Endogâmicos mdx , Diafragma/fisiopatologia , Diafragma/patologia , Insuficiência Respiratória/etiologia , Junção Neuromuscular/patologia , Junção Neuromuscular/metabolismo , Camundongos Endogâmicos C57BL
2.
J Neurol Sci ; 443: 120493, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36410186

RESUMO

The spinocerebellar ataxias (SCA) are a heterogeneous group of neurodegenerative disorders with an autosomal dominant inheritance. Symptoms include poor coordination and balance, peripheral neuropathy, impaired vision, incontinence, respiratory insufficiency, dysphagia, and dysarthria. Although many patients with SCA have respiratory-related complications, the exact mechanism and extent of this pathology remain unclear. This review aims to provide an update on the recent clinical and preclinical scientific findings on neuropathology causing respiratory insufficiency in SCA.


Assuntos
Transtornos de Deglutição , Neurologia , Insuficiência Respiratória , Ataxias Espinocerebelares , Humanos , Ataxias Espinocerebelares/complicações , Ataxias Espinocerebelares/genética , Disartria
3.
Expert Opin Biol Ther ; 22(9): 1117-1135, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35428407

RESUMO

INTRODUCTION: Pompe disease is an autosomal recessive disorder caused by a deficiency of acid-α-glucosidase (GAA), an enzyme responsible for hydrolyzing lysosomal glycogen. A lack of GAA leads to accumulation of glycogen in the lysosomes of cardiac, skeletal, and smooth muscle cells, as well as in the central and peripheral nervous system. Enzyme replacement therapy has been the standard of care for 15 years and slows disease progression, particularly in the heart, and improves survival. However, there are limitations of ERT success, which gene therapy can overcome. AREAS COVERED: Gene therapy offers several advantages including prolonged and consistent GAA expression and correction of skeletal muscle as well as the critical CNS pathology. We provide a systematic review of the preclinical and clinical outcomes of adeno-associated viral mediated gene therapy and alternative gene therapy strategies, highlighting what has been successful. EXPERT OPINION: Although the preclinical and clinical studies so far have been promising, barriers exist that need to be addressed in gene therapy for Pompe disease. New strategies including novel capsids for better targeting, optimized DNA vectors, and adjuctive therapies will allow for a lower dose, and ameliorate the immune response.


Assuntos
Doença de Depósito de Glicogênio Tipo II , Animais , Terapia Genética , Glicogênio/metabolismo , Glicogênio/uso terapêutico , Doença de Depósito de Glicogênio Tipo II/genética , Doença de Depósito de Glicogênio Tipo II/patologia , Doença de Depósito de Glicogênio Tipo II/terapia , Humanos , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , alfa-Glucosidases/genética , alfa-Glucosidases/metabolismo , alfa-Glucosidases/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA