Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Virol ; 97(2): e0152822, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36688650

RESUMO

Epstein-Barr virus (EBV) is a ubiquitous human pathogen that infects the majority of the adult population regardless of socioeconomic status or geographical location. EBV primarily infects B and epithelial cells and is associated with different cancers of these cell types, such as Burkitt lymphoma and nasopharyngeal carcinoma. While the life cycle of EBV in B cells is well understood, EBV infection within epithelium is not, largely due to the inability to model productive replication in epithelium in vitro. Organotypic cultures generated from primary human keratinocytes can model many aspects of EBV infection, including productive replication in the suprabasal layers. The EBV glycoprotein BDLF2 is a positional homologue of the murine gammaherpesvirus-68 protein gp48, which plays a role in intercellular spread of viral infection, though sequence homology is limited. To determine the role that BDLF2 plays in EBV infection, we generated a recombinant EBV in which the BDLF2 gene has been replaced with a puromycin resistance gene. The ΔBDLF2 recombinant virus infected both B cell and HEK293 cell lines and was able to immortalize primary B cells. However, the loss of BDLF2 resulted in substantially fewer infected cells in organotypic cultures compared to wild-type virus. While numerous clusters of infected cells representing a focus of infection are observed in wild-type-infected organotypic cultures, the majority of cells observed in the absence of BDLF2 were isolated cells, suggesting that the EBV glycoprotein BDLF2 plays a major role in intercellular viral spread in stratified epithelium. IMPORTANCE The ubiquitous herpesvirus Epstein-Barr virus (EBV) is associated with cancers of B lymphocytes and epithelial cells and is primarily transmitted in saliva. While several models exist for analyzing the life cycle of EBV in B lymphocytes, models of EBV infection in the epithelium have more recently been established. Using an organotypic culture model of epithelium that we previously determined accurately reflects EBV infection in situ, we have ascertained that the loss of the viral envelope protein BDLF2 had little effect on the EBV life cycle in B cells but severely restricted the number of infected cells in organotypic cultures. Loss of BDLF2 has a substantial impact on the size of infected areas, suggesting that BDLF2 plays a specific role in the spread of infection in stratified epithelium.


Assuntos
Epitélio , Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Proteínas do Envelope Viral , Adulto , Animais , Humanos , Camundongos , Epitélio/virologia , Infecções por Vírus Epstein-Barr/virologia , Células HEK293 , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/patogenicidade , Neoplasias/virologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
3.
PLoS Pathog ; 12(4): e1005550, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27077376

RESUMO

Cell-mediated immunity plays a key role in host control of viral infection. This is exemplified by life-threatening reactivations of e.g. herpesviruses in individuals with impaired T-cell and/or iNKT cell responses. To allow lifelong persistence and virus production in the face of primed immunity, herpesviruses exploit immune evasion strategies. These include a reduction in viral antigen expression during latency and a number of escape mechanisms that target antigen presentation pathways. Given the plethora of foreign antigens expressed in virus-producing cells, herpesviruses are conceivably most vulnerable to elimination by cell-mediated immunity during the replicative phase of infection. Here, we show that a prototypic herpesvirus, Epstein-Barr virus (EBV), encodes a novel, broadly acting immunoevasin, gp150, that is expressed during the late phase of viral replication. In particular, EBV gp150 inhibits antigen presentation by HLA class I, HLA class II, and the non-classical, lipid-presenting CD1d molecules. The mechanism of gp150-mediated T-cell escape does not depend on degradation of the antigen-presenting molecules nor does it require gp150's cytoplasmic tail. Through its abundant glycosylation, gp150 creates a shield that impedes surface presentation of antigen. This is an unprecedented immune evasion mechanism for herpesviruses. In view of its likely broader target range, gp150 could additionally have an impact beyond escape of T cell activation. Importantly, B cells infected with a gp150-null mutant EBV displayed rescued levels of surface antigen presentation by HLA class I, HLA class II, and CD1d, supporting an important role for iNKT cells next to classical T cells in fighting EBV infection. At the same time, our results indicate that EBV gp150 prolongs the timespan for producing viral offspring at the most vulnerable stage of the viral life cycle.


Assuntos
Apresentação de Antígeno/imunologia , Infecções por Vírus Epstein-Barr/imunologia , Evasão da Resposta Imune/imunologia , Ativação Linfocitária/imunologia , Glicoproteínas de Membrana/imunologia , Proteínas Virais/imunologia , Western Blotting , Citometria de Fluxo , Herpesvirus Humano 4/imunologia , Humanos , Microscopia Confocal , Linfócitos T/imunologia , Transdução Genética
4.
Proc Natl Acad Sci U S A ; 112(35): 11036-41, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26290577

RESUMO

EBV causes B lymphomas and undifferentiated nasopharyngeal carcinoma (NPC). Although the mechanisms by which EBV infects B lymphocytes have been extensively studied, investigation of the mechanisms by which EBV infects nasopharyngeal epithelial cells (NPECs) has only recently been enabled by the successful growth of B lymphoma Mo-MLV insertion region 1 homolog (BMI1)-immortalized NPECs in vitro and the discovery that neuropilin 1 expression positively affects EBV glycoprotein B (gB)-mediated infection and tyrosine kinase activations in enhancing EBV infection of BMI1-immortalized NPECs. We have now found that even though EBV infected NPECs grown as a monolayer at extremely low efficiency (<3%), close to 30% of NPECs grown as sphere-like cells (SLCs) were infected by EBV. We also identified nonmuscle myosin heavy chain IIA (NMHC-IIA) as another NPEC protein important for efficient EBV infection. EBV gH/gL specifically interacted with NMHC-IIA both in vitro and in vivo. NMHC-IIA densely aggregated on the surface of NPEC SLCs and colocalized with EBV. EBV infection of NPEC SLCs was significantly reduced by NMHC-IIA siRNA knock-down. NMHC-IIA antisera also efficiently blocked EBV infection. These data indicate that NMHC-IIA is an important factor for EBV NPEC infection.


Assuntos
Infecções por Vírus Epstein-Barr/fisiopatologia , Cadeias Pesadas de Miosina/fisiologia , Nasofaringe/virologia , Sequência de Aminoácidos , Linhagem Celular Transformada , Humanos , Dados de Sequência Molecular , Cadeias Pesadas de Miosina/química , Nasofaringe/patologia
5.
PLoS Pathog ; 11(10): e1005195, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26431332

RESUMO

Epstein-Barr virus (EBV) is a human herpesvirus associated with B-cell and epithelial cell malignancies. EBV lytically infects normal differentiated oral epithelial cells, where it causes a tongue lesion known as oral hairy leukoplakia (OHL) in immunosuppressed patients. However, the cellular mechanism(s) that enable EBV to establish exclusively lytic infection in normal differentiated oral epithelial cells are not currently understood. Here we show that a cellular transcription factor known to promote epithelial cell differentiation, KLF4, induces differentiation-dependent lytic EBV infection by binding to and activating the two EBV immediate-early gene (BZLF1 and BRLF1) promoters. We demonstrate that latently EBV-infected, telomerase-immortalized normal oral keratinocyte (NOKs) cells undergo lytic viral reactivation confined to the more differentiated cell layers in organotypic raft culture. Furthermore, we show that endogenous KLF4 expression is required for efficient lytic viral reactivation in response to phorbol ester and sodium butyrate treatment in several different EBV-infected epithelial cell lines, and that the combination of KLF4 and another differentiation-dependent cellular transcription factor, BLIMP1, is highly synergistic for inducing lytic EBV infection. We confirm that both KLF4 and BLIMP1 are expressed in differentiated, but not undifferentiated, epithelial cells in normal tongue tissue, and show that KLF4 and BLIMP1 are both expressed in a patient-derived OHL lesion. In contrast, KLF4 protein is not detectably expressed in B cells, where EBV normally enters latent infection, although KLF4 over-expression is sufficient to induce lytic EBV reactivation in Burkitt lymphoma cells. Thus, KLF4, together with BLIMP1, plays a critical role in mediating lytic EBV reactivation in epithelial cells.


Assuntos
Células Epiteliais/virologia , Infecções por Vírus Epstein-Barr/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas Repressoras/metabolismo , Ativação Viral/fisiologia , Adulto , Diferenciação Celular/fisiologia , Linhagem Celular , Imunoprecipitação da Cromatina , Células Epiteliais/patologia , Imunofluorescência , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Fator 4 Semelhante a Kruppel , Microdissecção e Captura a Laser , Leucoplasia Pilosa/metabolismo , Mutagênese Sítio-Dirigida , Reação em Cadeia da Polimerase , Fator 1 de Ligação ao Domínio I Regulador Positivo , Latência Viral/fisiologia
6.
Curr Top Microbiol Immunol ; 391: 221-35, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26428376

RESUMO

Epstein-Barr virus primarily, though not exclusively, infects B cells and epithelial cells. Many of the virus and cell proteins that are involved in entry into these two cell types in vitro have been identified, and their roles in attachment and fusion are being explored. This chapter discusses what is known about entry at the cellular level in vitro and describes what little is known about the process in vivo. It highlights some of the questions that still need to be addressed and considers some models that need further testing.


Assuntos
Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/fisiologia , Internalização do Vírus , Animais , Linfócitos B/virologia , Células Epiteliais/virologia , Herpesvirus Humano 4/genética , Humanos , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
7.
Arch Virol ; 161(3): 613-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26650040

RESUMO

The gammaherpesvirus alcelaphine herpesvirus 1 (AlHV-1) causes fatal malignant catarrhal fever (MCF) in susceptible species including cattle, but infects its reservoir host, wildebeest, without causing disease. Pathology in cattle may be influenced by virus-host cell interactions mediated by the virus glycoproteins. Cloning and expression of a haemagglutinin-tagged version of the AlHV-1 glycoprotein B (gB) was used to demonstrate that the AlHV-1-specific monoclonal antibody 12B5 recognised gB and that gB was the main component of the gp115 complex of AlHV-1, a glycoprotein complex of five components identified on the surface of AlHV-1 by immunoprecipitation and radiolabelling. Analysis of AlHV-1 virus particles showed that the native form of gB was detected by mAb 12B5 as a band of about 70 kDa, whilst recombinant gB expressed by transfected HEK293T cells appeared to be subject to additional cleavage and incomplete post-translational processing. Antibody 12B5 recognised an epitope on the N-terminal furin-cleaved fragment of gB on AlHV-1 virus particles. It could be used to detect recombinant and virus-expressed gB on western blots and on the surface of infected cells by flow cytometry, whilst recombinant gB was detected on the surface of transfected cells by immunofluorescence. Recombinant gB has potential as an antigen for ELISA detection of MCF virus infection and as a candidate vaccine antigen.


Assuntos
Anticorpos Antivirais/imunologia , Doenças dos Bovinos/diagnóstico , Gammaherpesvirinae/imunologia , Glicoproteínas/imunologia , Febre Catarral Maligna/diagnóstico , Proteínas Estruturais Virais/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Antivirais/isolamento & purificação , Bovinos , Gammaherpesvirinae/química , Glicoproteínas/análise , Imunoprecipitação , Proteínas de Membrana/análise , Proteínas de Membrana/imunologia , Radioimunoensaio , Proteínas Estruturais Virais/análise , Vírion/química
8.
J Virol ; 88(21): 12193-201, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25142593

RESUMO

UNLABELLED: Epstein-Barr virus (EBV) fusion with an epithelial cell requires virus glycoproteins gHgL and gB and is triggered by an interaction between gHgL and integrin αvß5, αvß6, or αvß8. Fusion with a B cell requires gHgL, gp42, and gB and is triggered by an interaction between gp42 and human leukocyte antigen class II. We report here that, like alpha- and betaherpesviruses, EBV, a gammaherpesvirus, can mediate cell fusion if gB and gHgL are expressed in trans. Entry of a gH-null virus into an epithelial cell is possible if the epithelial cell expresses gHgL, and entry of the same virus, which phenotypically lacks gHgL and gp42, into a B cell expressing gHgL is possible in the presence of a soluble integrin. Heat is capable of inducing the fusion of cells expressing only gB, and the proteolytic digestion pattern of gB in virions changes in the same way following the exposure of virus to heat or to soluble integrins. It is suggested that the Gibbs free energy released as a result of the high-affinity interaction of gHgL with an integrin contributes to the activation energy required to cause the refolding of gB from a prefusion to a postfusion conformation. IMPORTANCE: The core fusion machinery of herpesviruses consists of glycoproteins gB and gHgL. We demonstrate that as in alpha- and betaherpesvirus, gB and gHgL of the gammaherpesvirus EBV can mediate fusion and entry when expressed in trans in opposing membranes, implicating interactions between the ectodomains of the proteins in the activation of fusion. We further show that heat and exposure to a soluble integrin, both of which activate fusion, result in the same changes in the proteolytic digestion pattern of gB, possibly representing the refolding of gB from its prefusion to its postfusion conformation.


Assuntos
Herpesvirus Humano 4/fisiologia , Glicoproteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas do Envelope Viral/metabolismo , Proteínas Virais/metabolismo , Internalização do Vírus/efeitos da radiação , Animais , Linfócitos B/virologia , Linhagem Celular , Herpesvirus Humano 4/efeitos da radiação , Temperatura Alta , Humanos , Conformação Proteica
9.
PLoS Pathog ; 9(12): e1003806, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24367260

RESUMO

Herpes simplex virus (HSV)--and herpesviruses in general--encode for a multipartite entry/fusion apparatus. In HSV it consists of the HSV-specific glycoprotein D (gD), and three additional glycoproteins, gH/gL and gB, conserved across the Herpesviridae family and responsible for the execution of fusion. According to the current model, upon receptor binding, gD propagates the activation to gH/gL and to gB in a cascade fashion. Questions remain about how the cascade of activation is controlled and how it is synchronized with virion endocytosis, to avoid premature activation and exhaustion of the glycoproteins. We considered the possibility that such control might be carried out by as yet unknown receptors. Indeed, receptors for HSV gB, but not for gH/gL, have been described. In other members of the Herpesviridae family, such as Epstein-Barr virus, integrin receptors bind gH/gL and trigger conformational changes in the glycoproteins. We report that αvß6- and αvß8-integrins serve as receptors for HSV entry into experimental models of keratinocytes and other epithelial and neuronal cells. Evidence rests on loss of function experiments, in which integrins were blocked by antibodies or silenced, and gain of function experiments in which αvß6-integrin was expressed in integrin-negative cells. αvß6- and αvß8-integrins acted independently and are thus interchangeable. Both bind gH/gL with high affinity. The interaction profoundly affects the route of HSV entry and directs the virus to acidic endosomes. In the case of αvß8, but not αvß6-integrin, the portal of entry is located at lipid microdomains and requires dynamin 2. Thus, a major role of αvß6- or αvß8-integrin in HSV infection appears to be to function as gH/gL receptors and to promote virus endocytosis. We propose that placing the gH/gL activation under the integrin trigger point enables HSV to synchronize virion endocytosis with the cascade of glycoprotein activation that culminates in execution of fusion.


Assuntos
Antígenos de Neoplasias/fisiologia , Integrinas/fisiologia , Receptores Virais , Simplexvirus/fisiologia , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus , Animais , Células Cultivadas , Endocitose/fisiologia , Células HEK293 , Células HeLa , Humanos , Células K562 , Receptores Virais/metabolismo , Células Sf9 , Spodoptera
10.
J Oral Pathol Med ; 44(1): 28-36, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25040496

RESUMO

BACKGROUND: The recent epidemic of head and neck squamous cell carcinomas associated with human papilloma virus (HPV) has not addressed its association with lymphoid tissue in the oropharynx or the potential role of Epstein-Barr virus (EBV)/HPV coinfection. METHODS: The prevalence of HPV and EBV infection/coinfection and CD21 mRNA expression were determined in normal and cancerous tissues from the oropharynx using in situ hybridization (ISH), p16, and quantitative reverse transcriptase PCR (qRT-PCR). The effects of coinfection on tumorigenicity were evaluated using proliferation and invasion assays. RESULTS: Normal oropharynx, tonsil, non-cancer base of tongue (BOT), and BOT from sleep apnea patients demonstrated EBV positivity ranging from 7% to 36% depending on the site and methods of detection used (qRT-PCR or ISH). Among non-malignant BOT samples, HPV positivity was noted only in 20%. The percent of tonsil and BOT cancers positive for HPV (up to 63% and 80%, respectively) or coinfected with HPV/EBV (up to 25% and 70%, respectively) were both significantly associated with cancer status. Notably, HPV/EBV coinfection was observed only in malignant tissue originating in lymphoid-rich oropharynx sites (tonsil, BOT). CD21 mRNA (the major EBV attachment receptor) was detected in tonsil and BOT epithelium, but not in soft-palate epithelium. Coinfected cell lines showed a significant increase in invasiveness (P < 0.01). CONCLUSIONS: There is a high prevalence of HPV/EBV infection and coinfection in BOT and tonsil cancers, possibly reflecting their origins in lymphoid-rich tissue. In vitro, cells modeling coinfection have an increased invasive potential.


Assuntos
Alphapapillomavirus/fisiologia , Carcinogênese , Coinfecção/virologia , Infecções por Vírus Epstein-Barr/virologia , Neoplasias Orofaríngeas/virologia , Infecções por Papillomavirus/virologia , Carcinoma de Células Escamosas/virologia , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/patologia , Inibidor p16 de Quinase Dependente de Ciclina/análise , Herpesvirus Humano 4/imunologia , Humanos , Invasividade Neoplásica , Orofaringe/virologia , Neoplasias Palatinas/virologia , Palato Mole/virologia , Tonsila Palatina/virologia , Receptores de Complemento 3d/análise , Síndromes da Apneia do Sono/virologia , Língua/virologia , Neoplasias da Língua/virologia , Neoplasias Tonsilares/virologia
11.
Proc Natl Acad Sci U S A ; 109(48): 19792-7, 2012 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-23150579

RESUMO

Pathogens are sensed by Toll-like receptors (TLRs) and a growing number of non-TLR receptors. Integrins constitute a family of signaling receptors exploited by viruses and bacteria to access cells. By gain- and loss-of-function approaches we found that αvß3-integrin is a sensor of and plays a crucial role in the innate defense against herpes simplex virus (HSV). αvß3-integrin signaled through two pathways. One concurred with TLR2, affected activation/induction of interferons type 1 (IFNs-1), NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells), and a polarized set of cytokines and receptors. The virion glycoproteins gH/gL sufficed to induce IFN1 and NF-κB via this pathway. The other pathway was TLR2-independent, involved sarcoma (SRC)-spleen tyrosine kinase (SYK)-Caspase recruitment domain-containing protein 9 (CARD9)-TRIF (TIR-domain-containing adapter-inducing interferon-ß), and affected interferon regulatory factor 3 and 7 (IRF3-IRF7). The importance of αvß3-integrin-mediated defense is reflected in the observation that HSV evolved the immediate-early infected cellular protein 0 (ICP0) protein to counteract it. We propose that αvß3-integrin is considered a class of non-TLR pattern recognition receptors, a role likely exerted toward viruses and bacteria that interact with integrins and mount an innate response.


Assuntos
Herpesvirus Humano 1/imunologia , Imunidade Inata/fisiologia , Integrina alfaVbeta3/fisiologia , Linhagem Celular , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Expressão Gênica , Inativação Gênica , Herpesvirus Humano 1/fisiologia , Humanos , NF-kappa B/metabolismo , Reação em Cadeia da Polimerase , Replicação Viral
12.
Chin J Cancer ; 33(11): 545-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25322867

RESUMO

Epstein-Barr virus (EBV) infection occurs by distinct mechanisms across different cell types. EBV infection of B cells in vitro minimally requires 5 viral glycoproteins and 2 cellular proteins. By contrast, infection of epithelial cells requires a minimum of 3 viral glycoproteins, which are capable of interacting with one or more of 3 different cellular proteins. The full complement of proteins involved in entry into all cell types capable of being infected in vivo is unknown. This review discusses the events that occur when the virus is delivered into the cytoplasm of a cell, the players known to be involved in these events, and the ways in which these players are thought to function.


Assuntos
Herpesvirus Humano 4 , Proteínas Virais , Fenômenos Fisiológicos Virais , Linfócitos B , Células Epiteliais , Infecções por Vírus Epstein-Barr
13.
J Virol ; 86(1): 2-10, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22031939

RESUMO

Epstein-Barr virus (EBV) uses different virus and cell proteins to enter its two major targets, B lymphocytes and epithelial cells. The routes that the virus takes into the two cell types are also different. To determine if these differences extend to movement from the cell surface to the nucleus, we examined the fate of incoming virus. Essentially all virus that entered a B cell remained stable for at least 8 h. In contrast, up to 80% of virus entering an epithelial cell was degraded in a compartment sensitive to inhibitors of components involved in autophagy. Inhibitors of actin remodeling blocked entry into a B cell but had no effect or enhanced entry into an epithelial cell. Inhibitors of the microtubule network reduced intracellular transport in both cell types, but movement to the nucleus in an epithelial cell also required involvement of the actin cytoskeleton. Deletion of the cytoplasmic tail of CR2, which in an epithelial cell interacts with the actin nucleator FHOS/FHOD when cross-linked by EBV, had no effect on infection. However, inhibitors of downstream signaling by integrins reduced intracellular transport. Cooperation of the microtubule and actin cytoskeletons, possibly activated by interaction with integrin binding proteins in the envelope of EBV, is needed for successful infection of an epithelial cell.


Assuntos
Actinas/metabolismo , Linfócitos B/metabolismo , Células Epiteliais/metabolismo , Infecções por Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/fisiologia , Actinas/química , Actinas/genética , Linfócitos B/virologia , Transporte Biológico , Linhagem Celular , Células Epiteliais/virologia , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/virologia , Humanos , Microtúbulos/genética , Microtúbulos/metabolismo , Microtúbulos/virologia , Estrutura Terciária de Proteína
14.
PLoS Pathog ; 12(4): e1005417, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27124415
15.
J Virol ; 85(24): 13214-23, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21957301

RESUMO

Fusion of herpesviruses with their target cells requires a minimum of three glycoproteins, namely, gB and a complex of gH and gL. Epstein-Barr virus (EBV) fusion with an epithelial cell requires no additional virus glycoproteins, and we have shown previously that it can be initiated by an interaction between integrin αvß6 or αvß8 and gHgL. We now report that integrin αvß5 can also bind to gHgL and trigger fusion. Binding of gHgL to integrins is a two-step reaction. The first step, analyzed by surface plasmon resonance, was fast, with high association and low dissociation rate constants. The second step, detected by fluorescence spectroscopy of gHgL labeled at cysteine 153 at the domain I-domain II interface with the environmentally sensitive probes acrylodan and IANBD, involved a slower conformational change. Interaction of gHgL with neutralizing monoclonal antibodies or Fab' fragments was also consistent with a two-step reaction involving fast high-affinity binding and a subsequent slower conformational change. None of the antibodies bound to the same epitope, and none completely inhibited integrin binding. However, binding of each decreased the rate of conformational change induced by integrin binding, suggesting that neutralization might involve a conformational change that precludes fusion. Overall, the data are consistent with the interaction of gHgL with an integrin inducing a functionally important rearrangement at the domain I-domain II interface.


Assuntos
Células Epiteliais/virologia , Herpesvirus Humano 4/patogenicidade , Glicoproteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Receptores de Vitronectina/metabolismo , Proteínas do Envelope Viral/metabolismo , Proteínas Virais/metabolismo , Internalização do Vírus , Antígenos de Neoplasias/metabolismo , Humanos , Integrinas/metabolismo , Glicoproteínas de Membrana/química , Modelos Moleculares , Chaperonas Moleculares/química , Ligação Proteica , Conformação Proteica , Análise Espectral , Ressonância de Plasmônio de Superfície , Proteínas do Envelope Viral/química , Proteínas Virais/química
17.
Proc Natl Acad Sci U S A ; 106(48): 20464-9, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19920174

RESUMO

Epstein-Barr virus (EBV) is a ubiquitous human herpesvirus that is causally implicated in the development of lymphoid and epithelial tumors. Entry of virus requires fusion of virus envelopes and cell membranes. Fusion with B lymphocytes requires virus glycoprotein gB and a 3-part complex of glycoproteins, gHgLgp42. It is triggered by interactions between glycoprotein 42 (gp42) and HLA class II. However, fusion with epithelial cells is impeded by gp42 and instead is triggered by interactions between an unknown epithelial protein and a 2-part complex of gHgL. We report here that gHgL binds with high affinity to epithelial cells and that affinity of binding is increased by 3 orders of magnitude in the presence of Mn(2+). Binding and infection can be reduced by fibronectin and vitronectin, by down-regulation of integrin alphav, or by a peptide corresponding to 13 aa of gH which include a KGDE motif. Fusion of cells expressing gB and gHgL can be blocked by vitronectin or triggered by addition of soluble truncated integrins alphavbeta6 and alphavbeta8. We conclude that the direct interaction between EBV gHgL and integrins alphavbeta6 and alphavbeta8 can provide the trigger for fusion of EBV with an epithelial cell.


Assuntos
Células Epiteliais/metabolismo , Infecções por Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/metabolismo , Integrinas/metabolismo , Manganês/farmacologia , Proteínas Virais de Fusão/metabolismo , Internalização do Vírus/efeitos dos fármacos , Linfócitos B/metabolismo , Linfócitos B/virologia , Western Blotting , Células Epiteliais/virologia , Fibronectinas/farmacologia , Citometria de Fluxo , Técnica Indireta de Fluorescência para Anticorpo , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Imunoprecipitação , Integrinas/genética , Interferência de RNA , Vitronectina/farmacologia
18.
Nat Med ; 8(6): 594-9, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12042810

RESUMO

Epstein-Barr virus is ubiquitous and is causally implicated in lymphoid and epithelial malignancies. Virus invades oropharyngeal mucosa and establishes latency in B lymphocytes. Reactivating lymphocytes shed virus into saliva for spread to new hosts. A complex of three virus glycoproteins, gH, gL and gp42, is essential for entry. B-cell entry requires binding of gp42 to human leukocyte antigen (HLA) class II whereas entry into epithelial cells lacking HLA class II requires complexes without gp42. To accommodate infection of each, the virus carries both three-part and two-part complexes. We show here that HLA class II in the virus-producing cell alters the ratio of three-part to two-part complexes. As a consequence, virus originating in epithelial cells efficiently infects B cells whereas B-cell derived virus better infects epithelial cells. This molecular switch is a novel strategy that could alter tropism of virus from epithelium to B cells and then back to epithelium in a new host.


Assuntos
Linfócitos B/virologia , Células Epiteliais/virologia , Herpesvirus Humano 4/fisiologia , Replicação Viral/fisiologia , Animais , Linfócitos B/imunologia , Linhagem Celular , DNA Viral/análise , Células Epiteliais/imunologia , Deleção de Genes , Herpesvirus Humano 4/genética , Antígenos de Histocompatibilidade Classe II/análise , Ativação Linfocitária , Timidina Quinase/deficiência , Timidina Quinase/genética , Eliminação de Partículas Virais
19.
J Virol ; 83(2): 1140-6, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18987133

RESUMO

Upon viral infection, the major defense mounted by the host immune system is activation of the interferon (IFN)-mediated antiviral pathway, which is mediated by IFN regulatory factors (IRFs). In order to complete their life cycle, viruses must modulate host IFN-mediated immune responses. Despite its association with significant human health problems, activities of Epstein-Barr virus (EBV), a human tumor-inducing herpesvirus, to evade host IFN-mediated innate immunity have not been well characterized. To search for EBV genes that block IFN signal transduction, we carried out a screening of EBV open reading frames for their abilities to block IFN-alpha/beta-mediated luciferase expression upon Sendai virus infection. This screening demonstrates that EBV LF2 tegument protein specifically interacts with the central inhibitory association domain of IRF7, and this interaction leads to inhibition of the dimerization of IRF7, which suppresses IFN-alpha production and IFN-mediated immunity. This demonstrates a novel immune evasion mechanism of EBV LF2 in blocking cellular IRF7-mediated innate immunity.


Assuntos
Glicoproteínas/metabolismo , Herpesvirus Humano 4/fisiologia , Interferon Tipo I/antagonistas & inibidores , Proteínas Virais/metabolismo , Linhagem Celular , Genes Reporter , Glicoproteínas/imunologia , Herpesvirus Humano 4/imunologia , Humanos , Fator Regulador 7 de Interferon/antagonistas & inibidores , Fator Regulador 7 de Interferon/metabolismo , Luciferases/genética , Luciferases/metabolismo , Ligação Proteica , Proteínas Virais/imunologia
20.
J Oral Pathol Med ; 37(10): 626-33, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18710421

RESUMO

BACKGROUND: Epstein-Barr virus colonizes the oropharynx of a majority of individuals. It infects B lymphocytes and epithelial cells and can contribute to the development of both lymphoid and epithelial tumors. The virus uses CD21 for attachment to B cells which constitutively express the protein. Infection of epithelial cells in vitro is also more efficient if CD21 is available. However, its potential contribution to infection in vivo has been difficult to evaluate as discrepant results with antibodies have made it difficult to determine which, if any, epithelial cells in the oropharynx express CD21. METHODS: To reevaluate CD21 expression by an alternative method, epithelial cells were isolated by laser-capture microdissection from formalin-fixed sections of tissues from various parts of the oropharynx and mRNA was amplified with primers specific for the exons of CD21 which code for the Epstein-Barr virus binding site. RESULTS: CD21 mRNA was expressed in tonsil epithelium, but not in epithelium from buccal mucosa, uvula, soft palate or tongue. CONCLUSIONS: CD21 does not contribute to infection of most normal epithelial tissues in the oropharynx, but may contribute to infection of epithelial cells in the tonsil, where virus has been demonstrated in healthy carriers.


Assuntos
Células Epiteliais/virologia , Tonsila Palatina/virologia , Receptores de Complemento 3d/biossíntese , Linfócitos B/metabolismo , Células CACO-2 , Células Epiteliais/metabolismo , Infecções por Vírus Epstein-Barr/metabolismo , Humanos , Lasers , Microdissecção/instrumentação , Tonsila Palatina/citologia , Tonsila Palatina/metabolismo , Reação em Cadeia da Polimerase/métodos , RNA Mensageiro/análise , Proteínas do Envelope Viral/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA