Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 53(2): 861-71, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24372280

RESUMO

Here, we analyze the crystal structures of three new Bi/M oxophosphates, focusing on the ambiguity between order and disorder in different structural subunits. The three structures are original but systematically built on the assembly of O(Bi,M)4 tetrahedra into various 1D-oxocenterd units, separated by PO4 groups that create cationic channels. Two main subunits show versatile degrees of disorder, i.e., the cationic channels and some of the terminal O(Bi,M)4 entities. (a) In the compound [Bi2(Bi1.56K0.44)(dis)O3]K0.88(dis)(PO4)2, the K/K and K/Bi disorder is total on both nano- and micro-sized domains. (b) In the incommensurately modulated [Bi10(Bi∼0.5Cd∼0.5)8(dis)O16](Bi0.6Cd0.8)2(ord)(PO4)8, only the cationic channels show an ordered Bi/Cd arrangement which can be modified by minor stoichiometric changes between domains. (c) In [Bi18Zn10O21](ord)Zn5(ord)(PO4)14, both subunits are almost perfectly ordered (complex Bi/Zn sequence) into a 7-fold supercell, but this order strongly depends on the observation scale and is mainly lost in micronic-grains also due to slight compositional changes. However, the refined noncentrosymmetric organization is maintained (SHG tests) in the bulk. The relative stability of ordered versus disordered sites is discussed on the basis of the existence of two possible mixed sites and probably depends on the M chemical nature. Disorder was characterized by use of solid-state (31)P NMR probing for the first two cases. Finally, the observed disordered or long periodicities along the infinite dimension suggest the sketch of a periodic/rigid skeleton of O(Bi,M)4 units with counterions filling the interspace in more or less disordered arrangements.

2.
Inorg Chem ; 51(17): 9557-62, 2012 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-22908933

RESUMO

We show here a strategy to predict the crystal structure, formulate, and prepare new noncentrosymmetric (NCS) bismuth-phosphate based compounds. It is based on the cooperative-arrangement of polar building units (BUs) which can be created at particular stoichiometric conditions. The arrangement of such BUs into NCS compounds arise from the shortest-periodicity of repartition of the cationic charges in NCS structures than in the plausible, but never observed centrosymetric polytypes. This work validates the possibilities for the prediction of an extended series of novel compounds, tuning the size of BUs within a variety of controlled edifices. Despite their closed chemical composition, all the predicted terms appeared strikingly stable at precise stoichiometries.

3.
Dalton Trans ; 49(39): 13663-13670, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-32986057

RESUMO

Using in situ high pressure Raman spectroscopy, two structural changes were observed in a sample of the composition LiLa5O5(VO4)2. Taking this into account and by combining different conditions, three new compounds were further obtained from high pressure-high temperature synthesis. Their crystal structure description was done using the antiphase approach, which implies the presence of oxygen-centered [OLn4] building units, where Ln is La for (1) ß-LiLa5O5(VO4)2 and (2) ß-LiLa2O2(VO4) or Nd for (3) LiNd5O5(VO4)2 compounds. (1) crystallizes in the triclinic space group P1[combining macron] with unit cell parameters of a = 5.8167(15) Å, b = 12.2954(28) Å, c = 18.7221(69) Å, α = 102.03(2)°, ß = 98.76(2)°, and γ = 103.54(2)°; a 3D structure was deduced from the ambient pressure polymorph. (2) also crystallizes in P1[combining macron] with a = 5.8144(7) Å, b = 5.8167(7) Å, c = 8.5272(1) Å, α = 98.184(7)°, ß = 100.662(7)° and γ = 92.579(7)°. It shows a 2D structure with [La2O2]2+ layers surrounded by [LiO4] and [VO4] tetrahedra sharing corners and edges. (3) exhibits a 3D architecture isotypic with AP-LiLa5O5(VO4)2. The crucial role of high pressure in such types of synthesis and materials is also discussed.

4.
Inorg Chem ; 45(17): 6604-11, 2006 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-16903714

RESUMO

This work deals with the crystal-structure deduction of new structural types of Bi3+-M2+ oxyphosphates (M is a transition element) from HREM images. Previous studies showed the unequivocal attribution of particular HREM contrasts to the corresponding Bi/M/O-based polycationic species in similar materials. On this basis, the examination of isolated crystallites of polyphased samples led to new HREM contrasts assigned to new polycationic species in three new structural types. This helped us to solve one crystal structure, and the two other forms have been deduced through HREM image decoding. It helped to model the investigated materials from the structural point of view as well as the chemical one. The three assumed crystal structures are formed by polycationic ribbons, n tetrahedra wide, surrounded by PO4 groups, as already encountered in these series of oxyphosphates. However, here we deal with the original n= 4-6 cases, whereas, up to this work, only the n= 1-3 ribbons have been reported. The greater size of ribbons is associated with particular structural modifications responsible for complex HREM contrasts. The validity of the proposed models is verified in Part 2 of this work.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA