Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(51): 32545-32556, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33288705

RESUMO

Apoptosis, a conserved form of programmed cell death, shows interspecies differences that may reflect evolutionary diversification and adaptation, a notion that remains largely untested. Among insects, the most speciose animal group, the apoptotic pathway has only been fully characterized in Drosophila melanogaster, and apoptosis-related proteins have been studied in a few other dipteran and lepidopteran species. Here, we studied the apoptotic pathway in the aphid Acyrthosiphon pisum, an insect pest belonging to the Hemiptera, an earlier-diverging and distantly related order. We combined phylogenetic analyses and conserved domain identification to annotate the apoptotic pathway in A. pisum and found low caspase diversity and a large expansion of its inhibitory part, with 28 inhibitors of apoptosis (IAPs). We analyzed the spatiotemporal expression of a selected set of pea aphid IAPs and showed that they are differentially expressed in different life stages and tissues, suggesting functional diversification. Five IAPs are specifically induced in bacteriocytes, the specialized cells housing symbiotic bacteria, during their cell death. We demonstrated the antiapoptotic role of these five IAPs using heterologous expression in a tractable in vivo model, the Drosophila melanogaster developing eye. Interestingly, IAPs with the strongest antiapoptotic potential contain two BIR and two RING domains, a domain association that has not been observed in any other species. We finally analyzed all available aphid genomes and found that they all show large IAP expansion, with new combinations of protein domains, suggestive of evolutionarily novel aphid-specific functions.


Assuntos
Afídeos/citologia , Afídeos/fisiologia , Apoptose/fisiologia , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Animais , Animais Geneticamente Modificados , Caspases/química , Caspases/metabolismo , Drosophila melanogaster/genética , Olho/citologia , Olho/patologia , Regulação da Expressão Gênica , Genoma de Inseto , Proteínas Inibidoras de Apoptose/metabolismo , Proteínas de Insetos/genética , Filogenia , Domínios Proteicos
2.
Insects ; 14(7)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37504603

RESUMO

RNA(i) interference is a gene silencing mechanism triggered by double-stranded (ds)RNA, which promises to contribute to species-specific insect pest control strategies. The first step toward the application of RNAi as an insecticide is to enable efficient gene silencing upon dsRNA oral delivery. The desert locust, Schistocerca gregaria is a devastating agricultural pest. While this species is responsive to dsRNA delivered by intra-hemocoelic injection, it is refractory to orally delivered dsRNA. In this study, we evaluated the capacity of five cell-penetrating peptides (CPPs) to bind long dsRNA and protect it from the locust midgut environment. We then selected the CPP EB1 for further in vivo studies. EB1:dsRNA complexes failed to induce RNAi by feeding. Interestingly, we observed that intra-hemocoelic injection of small-interfering (si)RNAs does not result in a silencing response, but that this response can be obtained by injecting EB1:siRNA complexes. EB1 also protected siRNAs from midgut degradation activity. However, EB1:siRNA complexes failed as well in triggering RNAi when fed. Our findings highlight the complexity of the dsRNA/siRNA-triggered RNAi in this species and emphasize the multifactorial nature of the RNAi response in insects. Our study also stresses the importance of in vivo studies when it comes to dsRNA/siRNA delivery systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA