Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Cell ; 170(5): 875-888.e20, 2017 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-28757253

RESUMO

Pancreatic ductal adenocarcinoma (PDA) is one of the most lethal human malignancies, owing in part to its propensity for metastasis. Here, we used an organoid culture system to investigate how transcription and the enhancer landscape become altered during discrete stages of disease progression in a PDA mouse model. This approach revealed that the metastatic transition is accompanied by massive and recurrent alterations in enhancer activity. We implicate the pioneer factor FOXA1 as a driver of enhancer activation in this system, a mechanism that renders PDA cells more invasive and less anchorage-dependent for growth in vitro, as well as more metastatic in vivo. In this context, FOXA1-dependent enhancer reprogramming activates a transcriptional program of embryonic foregut endoderm. Collectively, our study implicates enhancer reprogramming, FOXA1 upregulation, and a retrograde developmental transition in PDA metastasis.


Assuntos
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Elementos Facilitadores Genéticos , Regulação Neoplásica da Expressão Gênica , Fator 3-alfa Nuclear de Hepatócito/genética , Neoplasias Pancreáticas/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Epigenômica , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Metástase Neoplásica , Organoides/metabolismo , Pâncreas/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia
2.
Cell ; 160(1-2): 324-38, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25557080

RESUMO

Pancreatic cancer is one of the most lethal malignancies due to its late diagnosis and limited response to treatment. Tractable methods to identify and interrogate pathways involved in pancreatic tumorigenesis are urgently needed. We established organoid models from normal and neoplastic murine and human pancreas tissues. Pancreatic organoids can be rapidly generated from resected tumors and biopsies, survive cryopreservation, and exhibit ductal- and disease-stage-specific characteristics. Orthotopically transplanted neoplastic organoids recapitulate the full spectrum of tumor development by forming early-grade neoplasms that progress to locally invasive and metastatic carcinomas. Due to their ability to be genetically manipulated, organoids are a platform to probe genetic cooperation. Comprehensive transcriptional and proteomic analyses of murine pancreatic organoids revealed genes and pathways altered during disease progression. The confirmation of many of these protein changes in human tissues demonstrates that organoids are a facile model system to discover characteristics of this deadly malignancy.


Assuntos
Carcinoma Ductal Pancreático/patologia , Modelos Biológicos , Técnicas de Cultura de Órgãos , Organoides/patologia , Neoplasias Pancreáticas/patologia , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Pâncreas/metabolismo , Pâncreas/patologia
3.
Gut ; 73(8): 1321-1335, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38670629

RESUMO

OBJECTIVE: The dysregulation of the axon guidance pathway is common in pancreatic ductal adenocarcinoma (PDAC), yet our understanding of its biological relevance is limited. Here, we investigated the functional role of the axon guidance cue SEMA3A in supporting PDAC progression. DESIGN: We integrated bulk and single-cell transcriptomic datasets of human PDAC with in situ hybridisation analyses of patients' tissues to evaluate SEMA3A expression in molecular subtypes of PDAC. Gain and loss of function experiments in PDAC cell lines and organoids were performed to dissect how SEMA3A contributes to define a biologically aggressive phenotype. RESULTS: In PDAC tissues, SEMA3A is expressed by stromal elements and selectively enriched in basal-like/squamous epithelial cells. Accordingly, expression of SEMA3A in PDAC cells is induced by both cell-intrinsic and cell-extrinsic determinants of the basal-like phenotype. In vitro, SEMA3A promotes cell migration as well as anoikis resistance. At the molecular level, these phenotypes are associated with increased focal adhesion kinase signalling through canonical SEMA3A-NRP1 axis. SEMA3A provides mouse PDAC cells with greater metastatic competence and favours intratumoural infiltration of tumour-associated macrophages and reduced density of T cells. Mechanistically, SEMA3A functions as chemoattractant for macrophages and skews their polarisation towards an M2-like phenotype. In SEMA3Ahigh tumours, depletion of macrophages results in greater intratumour infiltration by CD8+T cells and better control of the disease from antitumour treatment. CONCLUSIONS: Here, we show that SEMA3A is a stress-sensitive locus that promotes the malignant phenotype of basal-like PDAC through both cell-intrinsic and cell-extrinsic mechanisms.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Fenótipo , Semaforina-3A , Semaforina-3A/metabolismo , Semaforina-3A/genética , Humanos , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Animais , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Camundongos , Movimento Celular/genética , Linhagem Celular Tumoral , Orientação de Axônios/genética , Neuropilina-1/metabolismo , Neuropilina-1/genética , Transdução de Sinais
4.
Int J Mol Sci ; 24(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37762402

RESUMO

Primary and secondary non-response affects approximately 50% of patients with Crohn's disease treated with anti-tumour necrosis factor (TNF) monoclonal antibodies. To date, very little single cell research exists regarding drug repurposing in Crohn's disease. We aimed to elucidate the cellular phenomena underlying resistance to anti-TNF therapy in patients with Crohn's disease and to identify potential drug candidates for these patients. Single-cell transcriptome analyses were performed using data (GSE134809) from the Gene Expression Omnibus and Library of Integrated Network-Based Cellular Signatures L1000 Project. Data aligned to the Genome Reference Consortium Human Build 38 reference genome using the Cell Ranger software were processed using the Seurat package. To capture significant functional terms, gene ontology functional enrichment analysis was performed on the marker genes. For biological analysis, 93,893 cells were retained (median 20,163 genes). Through marker genes, seven major cell lineages were identified: B-cells, T-cells, natural killer cells, monocytes, endothelial cells, epithelial cells, and tissue stem cells. In the anti-TNF-resistant samples, the top 10 differentially expressed genes were HLA-DQB-1, IGHG1, RPS23, RPL7A, ARID5B, LTB, STAT1, NAMPT, COTL1, ISG20, IGHA1, IGKC, and JCHAIN, which were robustly distributed in all cell lineages, mainly in B-cells. Through molecular function analyses, we found that the biological functions of both monocyte and T-cell groups mainly involved immune-mediated functions. According to multi-cluster drug repurposing prediction, vorinostat is the top drug candidate for patients with anti-TNF-refractory Crohn's disease. Differences in cell populations and immune-related activity within tissues may influence the responsiveness of Crohn's disease to anti-TNF agents. Vorinostat may serve as a promising novel therapy for anti-TNF-resistant Crohn's disease.

5.
Nature ; 495(7440): 241-5, 2013 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-23467088

RESUMO

Epithelial ovarian cancer (EOC) is the fifth leading cause of cancer deaths among women in the United States, but its pathogenesis is poorly understood. Some epithelial cancers are known to occur in transitional zones between two types of epithelium, whereas others have been shown to originate in epithelial tissue stem cells. The stem cell niche of the ovarian surface epithelium (OSE), which is ruptured and regenerates during ovulation, has not yet been defined unequivocally. Here we identify the hilum region of the mouse ovary, the transitional (or junction) area between the OSE, mesothelium and tubal (oviductal) epithelium, as a previously unrecognized stem cell niche of the OSE. We find that cells of the hilum OSE are cycling slowly and express stem and/or progenitor cell markers ALDH1, LGR5, LEF1, CD133 and CK6B. These cells display long-term stem cell properties ex vivo and in vivo, as shown by our serial sphere generation and long-term lineage-tracing assays. Importantly, the hilum cells show increased transformation potential after inactivation of tumour suppressor genes Trp53 and Rb1, whose pathways are altered frequently in the most aggressive and common type of human EOC, high-grade serous adenocarcinoma. Our study supports experimentally the idea that susceptibility of transitional zones to malignant transformation may be explained by the presence of stem cell niches in those areas. Identification of a stem cell niche for the OSE may have important implications for understanding EOC pathogenesis.


Assuntos
Epitélio/patologia , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/patologia , Ovário/patologia , Nicho de Células-Tronco , Animais , Biomarcadores/análise , Biomarcadores/metabolismo , Carcinoma Epitelial do Ovário , Linhagem da Célula , Separação Celular , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Epitélio/metabolismo , Feminino , Masculino , Camundongos , Neoplasias Epiteliais e Glandulares/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neoplasias Ovarianas/metabolismo , Ovário/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteína do Retinoblastoma/deficiência , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
6.
J Pathol ; 238(2): 197-204, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26419819

RESUMO

Pancreatic ductal adenocarcinoma (PDA) is one of the most difficult human malignancies to treat. The 5-year survival rate of PDA patients is 7% and PDA is predicted to become the second leading cancer-related cause of death in the USA. Despite intensive efforts, the translation of findings in preclinical studies has been ineffective, due partially to the lack of preclinical models that faithfully recapitulate features of human PDA. Here, we review current preclinical models for human PDA (eg human PDA cell lines, cell line-based xenografts and patient-derived tumour xenografts). In addition, we discuss potential applications of the recently developed pancreatic ductal organoids, three-dimensional culture systems and organoid-based xenografts as new preclinical models for PDA.


Assuntos
Carcinoma Ductal Pancreático/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos , Camundongos , Transplante de Neoplasias , Transplante Heterólogo
7.
Proc Natl Acad Sci U S A ; 108(34): 14240-5, 2011 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-21831840

RESUMO

Recent observations suggest that p53 mutations are responsible not only for growth of primary tumors but also for their dissemination. However, mechanisms involved in p53-mediated control of cell motility and invasion remain poorly understood. By using the primary ovarian surface epithelium cell culture, we show that conditional inactivation of p53 or expression of its mutant forms results in overexpression of MET receptor tyrosine kinase, a crucial regulator of invasive growth. At the same time, cells acquire increased MET-dependent motility and invasion. Wild-type p53 negatively regulates MET expression by two mechanisms: (i) transactivation of MET-targeting miR-34, and (ii) inhibition of SP1 binding to MET promoter. Both mechanisms are not functional in p53 absence, but mutant p53 proteins retain partial MET promoter suppression. Accordingly, MET overexpression, cell motility, and invasion are particularly high in p53-null cells. These results identify MET as a critical effector of p53 and suggest that inhibition of MET may be an effective antimetastatic approach to treat cancers with p53 mutations. These results also show that the extent of advanced cancer traits, such as invasion, may be determined by alterations in individual components of p53/MET regulatory network.


Assuntos
Movimento Celular , Regulação Neoplásica da Expressão Gênica , Proteínas Proto-Oncogênicas c-met/genética , Receptores de Fatores de Crescimento/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Linhagem Celular Tumoral , Epitélio/metabolismo , Epitélio/patologia , Feminino , Inativação Gênica , Humanos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Mutantes/metabolismo , Invasividade Neoplásica , Ovário/metabolismo , Ovário/patologia , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteínas Proto-Oncogênicas c-met/metabolismo , Receptores de Fatores de Crescimento/metabolismo , Fator de Transcrição Sp1/metabolismo
8.
iScience ; 27(4): 109414, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38532888

RESUMO

In pancreatic ductal adenocarcinoma (PDAC), no recurrent metastasis-specific mutation has been found, suggesting that epigenetic mechanisms, such as DNA methylation, are the major contributors of late-stage disease progression. Here, we performed the first whole-genome bisulfite sequencing (WGBS) on mouse and human PDAC organoid models to identify stage-specific and molecular subtype-specific DNA methylation signatures. With this approach, we identified thousands of differentially methylated regions (DMRs) that can distinguish between the stages and molecular subtypes of PDAC. Stage-specific DMRs are associated with genes related to nervous system development and cell-cell adhesions, and are enriched in promoters and bivalent enhancers. Subtype-specific DMRs showed hypermethylation of GATA6 foregut endoderm transcriptional networks in the squamous subtype and hypermethylation of EMT transcriptional networks in the progenitor subtype. These results indicate that aberrant DNA methylation contributes to both PDAC progression and subtype differentiation, resulting in significant and reoccurring DNA methylation patterns with diagnostic and prognostic potential.

9.
Adv Sci (Weinh) ; 11(6): e2308537, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38110836

RESUMO

Engrailed-1 (EN1) is a critical homeodomain transcription factor (TF) required for neuronal survival, and EN1 expression has been shown to promote aggressive forms of triple negative breast cancer. Here, it is reported that EN1 is aberrantly expressed in a subset of pancreatic ductal adenocarcinoma (PDA) patients with poor outcomes. EN1 predominantly repressed its target genes through direct binding to gene enhancers and promoters, implicating roles in the activation of MAPK pathways and the acquisition of mesenchymal cell properties. Gain- and loss-of-function experiments demonstrated that EN1 promoted PDA transformation and metastasis in vitro and in vivo. The findings nominate the targeting of EN1 and downstream pathways in aggressive PDA.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Neoplasias Pancreáticas/genética , Regulação da Expressão Gênica , Carcinoma Ductal Pancreático/genética
10.
Nat Commun ; 14(1): 5685, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37709746

RESUMO

Pancreatic cancer (PC), one of the most aggressive and life-threatening human malignancies, is known for its resistance to cytotoxic therapies. This is increasingly ascribed to the subpopulation of undifferentiated cells, known as pancreatic cancer stem cells (PCSCs), which display greater evolutionary fitness than other tumor cells to evade the cytotoxic effects of chemotherapy. PCSCs are crucial for tumor relapse as they possess 'stem cell-like' features that are characterized by self-renewal and differentiation. However, the molecular mechanisms that maintain the unique characteristics of PCSCs are poorly understood. Here, we identify the histone methyltransferase KMT2A as a physical binding partner of an RNA polymerase-associated PHF5A-PHF14-HMG20A-RAI1 protein subcomplex and an epigenetic regulator of PCSC properties and functions. Targeting the protein subcomplex in PCSCs with a KMT2A-WDR5 inhibitor attenuates their self-renewal capacity, cell viability, and in vivo tumorigenicity.


Assuntos
Pâncreas , Neoplasias Pancreáticas , Humanos , Células-Tronco Neoplásicas , Neoplasias Pancreáticas/genética , Pesquisadores , Histona Metiltransferases , Proteínas de Grupo de Alta Mobilidade , Transativadores , Proteínas de Ligação a RNA , Peptídeos e Proteínas de Sinalização Intracelular
11.
bioRxiv ; 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37398312

RESUMO

Pancreatic cancer is one of the deadliest diseases in human malignancies. Among total pancreatic cancer patients, ∼10% of patients are categorized as familial pancreatic cancer (FPC) patients, carrying germline mutations of the genes involved in DNA repair pathways ( e.g., BRCA2 ). Personalized medicine approaches tailored toward patients' mutations would improve patients' outcome. To identify novel vulnerabilities of BRCA2 -deficient pancreatic cancer, we generated isogenic Brca2 -deficient murine pancreatic cancer cell lines and performed high-throughput drug screens. High-throughput drug screening revealed that Brca2 -deficient cells are sensitive to Bromodomain and Extraterminal Motif (BET) inhibitors, suggesting that BET inhibition might be a potential therapeutic approach. We found that BRCA2 deficiency increased autophagic flux, which was further enhanced by BET inhibition in Brca2 -deficient pancreatic cancer cells, resulting in autophagy-dependent cell death. Our data suggests that BET inhibition can be a novel therapeutic strategy for BRCA2 -deficient pancreatic cancer.

12.
Cell Death Dis ; 14(9): 620, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735513

RESUMO

Pancreatic cancer is one of the deadliest diseases in human malignancies. Among total pancreatic cancer patients, ~10% of patients are categorized as familial pancreatic cancer (FPC) patients, carrying germline mutations of the genes involved in DNA repair pathways (e.g., BRCA2). Personalized medicine approaches tailored toward patients' mutations would improve patients' outcome. To identify novel vulnerabilities of BRCA2-deficient pancreatic cancer, we generated isogenic Brca2-deficient murine pancreatic cancer cell lines and performed high-throughput drug screens. High-throughput drug screening revealed that Brca2-deficient cells are sensitive to Bromodomain and Extraterminal Motif (BET) inhibitors, suggesting that BET inhibition might be a potential therapeutic approach. We found that BRCA2 deficiency increased autophagic flux, which was further enhanced by BET inhibition in Brca2-deficient pancreatic cancer cells, resulting in autophagy-dependent cell death. Our data suggests that BET inhibition can be a novel therapeutic strategy for BRCA2-deficient pancreatic cancer.


Assuntos
Morte Celular Autofágica , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Autofagia/genética , Proteína BRCA2/genética , Pâncreas , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas
13.
Front Oncol ; 12: 890154, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35785187

RESUMO

To date, driver genes for pancreatic cancer treatment are difficult to pursue therapeutically. Targeting mutated KRAS, the most renowned driver gene in pancreatic cancer, is an active area of study. We discovered a gene named SEMA3C was highly expressed in pancreatic cancer cell lines and patients with a G12D mutation in KRAS. High expression of SEMA3C in patients was significantly associated with the decreased survival of pancreatic cancer patients based on the TCGA database. In pancreatic cancer cells, SEMA3C knockdown or inhibition exhibited growth/colony inhibition and cell cycle arrest. In addition, SEMA3C inhibition sensitized KRAS or MEK1/2 inhibition in pancreatic cancer cells. Overexpression of SEMA3C resulted in the induction of autophagy, whereas depletion of SEMA3C compromised induction of autophagy. SEMA3C modified the PD-L1 expression in tumor and immune cells and is correlated with the M2-like macrophage marker ARG1/CD163 expression, which could reshape the tumor microenvironment. Inhibition of SEMA3C decreased tumor formation in the xenograft model in vivo. Taken together, our data suggest that SEMA3C plays a substantial role in promoting cancer cell survival by regulating the autophagy process and impacting the tumor environment immune response. SEMA3C can be used as a novel target or marker with therapeutic or diagnostic potential in pancreatic cancer especially in tumors harboring the specific KRAS G12D mutation.

14.
Cancers (Basel) ; 14(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35805011

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) has an extremely poor prognosis and represents a major public health issue, as both its incidence and mortality are expecting to increase steeply over the next years. Effective screening strategies are lacking, and most patients are diagnosed with unresectable disease precluding the only chance of cure. Therapeutic options for advanced disease are limited, and the treatment paradigm is still based on chemotherapy, with a few rare exceptions to targeted therapies. Germline variants in cancer susceptibility genes-particularly those involved in mechanisms of DNA repair-are emerging as promising targets for PDAC treatment and prevention. Hereditary PDAC is part of the spectrum of several syndromic disorders, and germline testing of PDAC patients has relevant implications for broad cancer prevention. Germline aberrations in BRCA1 and BRCA2 genes are predictive biomarkers of response to poly(adenosine diphosphate-ribose) polymerase (PARP) inhibitor olaparib and platinum-based chemotherapy in PDAC, while mutations in mismatch repair genes identify patients suitable for immune checkpoint inhibitors. This review provides a timely and comprehensive overview of germline aberrations in PDAC and their implications for clinical care. It also discusses the need for optimal approaches to better select patients for PARP inhibitor therapy, novel therapeutic opportunities under clinical investigation, and preclinical models for cancer susceptibility and drug discovery.

15.
NPJ Genom Med ; 7(1): 71, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36535941

RESUMO

The establishment of patient-derived pancreatic cancer organoid culture in recent years creates an exciting opportunity for researchers to perform a wide range of in vitro studies on a model that closely recapitulates the tumor. One of the outstanding question in pancreatic cancer biology is the causes and consequences of genomic heterogeneity observed in the disease. However, to use pancreatic cancer organoids as a model to study genomic variations, we need to first understand the degree of genomic heterogeneity and its stability within organoids. Here, we used single-cell whole-genome sequencing to investigate the genomic heterogeneity of two independent pancreatic cancer organoid lines, as well as their genomic stability with extended culture. Clonal populations with similar copy number profiles were observed within the organoids, and the proportion of these clones was shifted with extended culture, suggesting the growth advantage of some clones. However, sub-clonal genomic heterogeneity was also observed within each clonal population, indicating the genomic instability of the pancreatic cancer cells themselves. Furthermore, our transcriptomic analysis also revealed a positive correlation between copy number alterations and gene expression regulation, suggesting the "gene dosage" effect of these copy number alterations that translates to gene expression regulation.

16.
Cancer Res Commun ; 2(9): 951-965, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36382086

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) continues to be a major health problem. A ketogenic diet (KD), characterized by a very low carbohydrate and high fat composition, has gained attention for its anti-tumor potential. We evaluated the effect and mechanisms of feeding a strict KD alone or in combination with gemcitabine in the autochthonous LSL-KrasG12D/+; LSL-Trp53 R172H/+; Pdx1-Cre (KPC) mouse model. For this purpose, both male and female pancreatic tumor-bearing KPC mice were allocated to a control diet (CD; %kcal: 70% carb, 14% protein, 16% fat), a KD (%kcal: 14% protein, 1% carb, 85% fat), a CD + gemcitabine (CG), or a KD + gemcitabine (KG) group. Mice fed a KD alone or in combination with gemcitabine showed significantly increased blood ß-hydroxybutyrate levels compared to mice fed a CD or CG. KPC mice fed a KG had a significant increase in overall median survival compared to KPC mice fed a CD (increased overall median survival by 42%). Interestingly, when the data was disaggregated by sex, the effect of a KG was significant in female KPC mice (60% increase in median overall survival), but not in male KPC mice (28% increase in median overall survival). Mechanistically, the enhanced survival response to a KD combined with gemcitabine was multifactorial, including inhibition of ERK and AKT pathways, regulation of fatty acid metabolism and the modulation of the gut microbiota. In summary, a KD in combination with gemcitabine appears beneficial as a treatment strategy in PDAC in KPC mice, deserving further clinical evaluation.


Assuntos
Carcinoma Ductal Pancreático , Dieta Cetogênica , Neoplasias Pancreáticas , Camundongos , Masculino , Feminino , Animais , Gencitabina , Neoplasias Pancreáticas/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Neoplasias Pancreáticas
17.
Cancer Res Commun ; 2(12): 1668, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36970724

RESUMO

[This corrects the article DOI: 10.1158/2767-9764.CRC-22-0256.][This corrects the article DOI: 10.1158/2767-9764.CRC-22-0256.].

18.
Biomolecules ; 11(8)2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34439749

RESUMO

Pancreatic cancer is the third leading cause of cancer-related deaths in the United States. Pancreatic ductal adenocarcinoma (PDA) is the most common (90%) and aggressive type of pancreatic cancer. Genomic analyses of PDA specimens have identified the recurrent genetic mutations that drive PDA initiation and progression. However, the underlying mechanisms that further drive PDA metastasis remain elusive. Despite many attempts, no recurrent genetic mutation driving PDA metastasis has been found, suggesting that PDA metastasis is driven by epigenetic fluctuations rather than genetic factors. Therefore, establishing epigenetic mechanisms of PDA metastasis would facilitate the development of successful therapeutic interventions. In this review, we provide a comprehensive overview on the role of epigenetic mechanisms in PDA as a critical contributor on PDA progression and metastasis. In particular, we explore the recent advancements elucidating the role of nucleosome remodeling, histone modification, and DNA methylation in the process of cancer metastasis.


Assuntos
Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Epigênese Genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Adenocarcinoma/genética , Animais , Biomarcadores/metabolismo , Carcinogênese/genética , Diferenciação Celular , Cromatina/metabolismo , Metilação de DNA , Progressão da Doença , Epigenômica , Regulação Neoplásica da Expressão Gênica , Histonas/química , Humanos , Camundongos , Mutação , Metástase Neoplásica , Prognóstico , Fatores de Transcrição
19.
NAR Cancer ; 3(2): zcab023, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34316710

RESUMO

Cancer cells utilize epigenetic alterations to acquire autonomous capabilities for tumor maintenance. Here, we show that pancreatic ductal adenocarcinoma (PDA) cells utilize super-enhancers (SEs) to activate the transcription factor EVI1 (ecotropic viral integration site 1) gene, resulting in activation of an EVI1-dependent transcription program conferring PDA tumorigenesis. Our data indicate that SE is the vital cis-acting element to maintain aberrant EVI1 transcription in PDA cells. Consistent with disease progression and inferior survival outcomes of PDA patients, we further show that EVI1 upregulation is a major cause of aggressive tumor phenotypes. Specifically, EVI1 promotes anchorage-independent growth and motility in vitro and enhances tumor propagation in vivo. Mechanistically, EVI1-dependent activation of tumor-promoting gene expression programs through the stepwise configuration of the active enhancer chromatin attributes to these phenotypes. In sum, our findings support the premise that EVI1 is a crucial driver of oncogenic transcription programs in PDA cells. Further, we emphasize the instructive role of epigenetic aberrancy in establishing PDA tumorigenesis.

20.
Nat Commun ; 12(1): 3414, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099731

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) patients have a 5-year survival rate of only 8% largely due to late diagnosis and insufficient therapeutic options. Neutrophils are among the most abundant immune cell type within the PDAC tumor microenvironment (TME), and are associated with a poor clinical prognosis. However, despite recent advances in understanding neutrophil biology in cancer, therapies targeting tumor-associated neutrophils are lacking. Here, we demonstrate, using pre-clinical mouse models of PDAC, that lorlatinib attenuates PDAC progression by suppressing neutrophil development and mobilization, and by modulating tumor-promoting neutrophil functions within the TME. When combined, lorlatinib also improves the response to anti-PD-1 blockade resulting in more activated CD8 + T cells in PDAC tumors. In summary, this study identifies an effect of lorlatinib in modulating tumor-associated neutrophils, and demonstrates the potential of lorlatinib to treat PDAC.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Inibidores de Checkpoint Imunológico/farmacologia , Lactamas Macrocíclicas/farmacologia , Neutrófilos/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Aminopiridinas , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral/transplante , Modelos Animais de Doenças , Sinergismo Farmacológico , Feminino , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Lactamas , Lactamas Macrocíclicas/uso terapêutico , Ativação Linfocitária/efeitos dos fármacos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Masculino , Camundongos , Camundongos Transgênicos , Neutrófilos/imunologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Pirazóis , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA