Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(24): 11526-11532, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38079244

RESUMO

Fe3GaTe2, a recently discovered van der Waals ferromagnet, demonstrates intrinsic ferromagnetism above room temperature, necessitating a comprehensive investigation of the microscopic origins of its high Curie temperature (TC). In this study, we reveal the electronic structure of Fe3GaTe2 in its ferromagnetic ground state using angle-resolved photoemission spectroscopy and density functional theory calculations. Our results establish a consistent correspondence between the measured band structure and theoretical calculations, underscoring the significant contributions of the Heisenberg exchange interaction (Jex) and magnetic anisotropy energy to the development of the high-TC ferromagnetic ordering in Fe3GaTe2. Intriguingly, we observe substantial modifications to these crucial driving factors through doping, which we attribute to alterations in multiple spin-splitting bands near the Fermi level. These findings provide valuable insights into the underlying electronic structure and its correlation with the emergence of high-TC ferromagnetic ordering in Fe3GaTe2.

2.
Nano Lett ; 20(11): 7973-7979, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33104350

RESUMO

The proximity of two different materials leads to an intricate coupling of quasiparticles so that an unprecedented electronic state is often realized at the interface. Here, we demonstrate a resonance-type many-body ground state in graphene, a nonmagnetic two-dimensional Dirac semimetal, when grown on SmB6, a Kondo insulator, via thermal decomposition of fullerene molecules. This ground state is typically observed in three-dimensional magnetic materials with correlated electrons. Above the characteristic Kondo temperature of the substrate, the electron band structure of pristine graphene remains almost intact. As temperature decreases, however, the Dirac Fermions of graphene become hybridized with the Sm 4f states. Remarkable enhancement of the hybridization and Kondo resonance is observed with further cooling and increasing charge-carrier density of graphene, evidencing the Kondo screening of the Sm 4f local magnetic moment by the conduction electrons of graphene at the interface. These findings manifest the realization of the Kondo effect in graphene by the proximity of SmB6 that is tuned by the temperature and charge-carrier density of graphene.

3.
Nano Lett ; 20(1): 95-100, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31752490

RESUMO

Identifying material parameters affecting properties of ferromagnets is key to optimized materials that are better suited for spintronics. Magnetic anisotropy is of particular importance in van der Waals magnets, since it not only influences magnetic and spin transport properties, but also is essential to stabilizing magnetic order in the two-dimensional limit. Here, we report that hole doping effectively modulates the magnetic anisotropy of a van der Waals ferromagnet and explore the physical origin of this effect. Fe3-xGeTe2 nanoflakes show a significant suppression of the magnetic anisotropy with hole doping. Electronic structure measurements and calculations reveal that the chemical potential shift associated with hole doping is responsible for the reduced magnetic anisotropy by decreasing the energy gain from the spin-orbit induced band splitting. Our findings provide an understanding of the intricate connection between electronic structures and magnetic properties in two-dimensional magnets and propose a method to engineer magnetic properties through doping.

4.
Nano Lett ; 18(6): 3661-3666, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29761696

RESUMO

The interaction between a magnetic impurity, such as cerium (Ce) atom, and surrounding electrons has been one of the core problems in understanding many-body interaction in solid and its relation to magnetism. Kondo effect, the formation of a new resonant ground state with quenched magnetic moment, provides a general framework to describe many-body interaction in the presence of magnetic impurity. In this Letter, a combined study of angle-resolved photoemission (ARPES) and dynamic mean-field theory (DMFT) on Ce-intercalated graphene shows that Ce-induced localized states near Fermi energy, EF, hybridized with the graphene π-band, exhibit gradual increase in spectral weight upon decreasing temperature. The observed temperature dependence follows the expectations from the Kondo picture in the weak coupling limit. Our results provide a novel insight how Kondo physics emerges in the sea of two-dimensional Dirac electrons.

5.
Nano Lett ; 18(2): 689-694, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29300484

RESUMO

We present the electronic characterization of single-layer 1H-TaSe2 grown by molecular beam epitaxy using a combined angle-resolved photoemission spectroscopy, scanning tunneling microscopy/spectroscopy, and density functional theory calculations. We demonstrate that 3 × 3 charge-density-wave (CDW) order persists despite distinct changes in the low energy electronic structure highlighted by the reduction in the number of bands crossing the Fermi energy and the corresponding modification of Fermi surface topology. Enhanced spin-orbit coupling and lattice distortion in the single-layer play a crucial role in the formation of CDW order. Our findings provide a deeper understanding of the nature of CDW order in the two-dimensional limit.

6.
Nano Lett ; 17(10): 5914-5918, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28906124

RESUMO

The electron band structure of graphene on SrTiO3 substrate has been investigated as a function of temperature. The high-resolution angle-resolved photoemission study reveals that the spectral width at Fermi energy and the Fermi velocity of graphene on SrTiO3 are comparable to those of graphene on a BN substrate. Near the charge neutrality, the energy-momentum dispersion of graphene exhibits a strong deviation from the well-known linearity, which is magnified as temperature decreases. Such modification resembles the characteristics of enhanced electron-electron interaction. Our results not only suggest that SrTiO3 can be a plausible candidate as a substrate material for applications in graphene-based electronics but also provide a possible route toward the realization of a new type of strongly correlated electron phases in the prototypical two-dimensional system via the manipulation of temperature and a proper choice of dielectric substrates.

7.
Nano Lett ; 16(4): 2485-91, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26974978

RESUMO

High quality WSe2 films have been grown on bilayer graphene (BLG) with layer-by-layer control of thickness using molecular beam epitaxy. The combination of angle-resolved photoemission, scanning tunneling microscopy/spectroscopy, and optical absorption measurements reveal the atomic and electronic structures evolution and optical response of WSe2/BLG. We observe that a bilayer of WSe2 is a direct bandgap semiconductor, when integrated in a BLG-based heterostructure, thus shifting the direct-indirect band gap crossover to trilayer WSe2. In the monolayer limit, WSe2 shows a spin-splitting of 475 meV in the valence band at the K point, the largest value observed among all the MX2 (M = Mo, W; X = S, Se) materials. The exciton binding energy of monolayer-WSe2/BLG is found to be 0.21 eV, a value that is orders of magnitude larger than that of conventional three-dimensional semiconductors, yet small as compared to other two-dimensional transition metal dichalcogennides (TMDCs) semiconductors. Finally, our finding regarding the overall modification of the electronic structure by an alkali metal surface electron doping opens a route to further control the electronic properties of TMDCs.

9.
Proc Natl Acad Sci U S A ; 108(28): 11365-9, 2011 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-21709258

RESUMO

The Landau-Fermi liquid picture for quasiparticles assumes that charge carriers are dressed by many-body interactions, forming one of the fundamental theories of solids. Whether this picture still holds for a semimetal such as graphene at the neutrality point, i.e., when the chemical potential coincides with the Dirac point energy, is one of the long-standing puzzles in this field. Here we present such a study in quasi-freestanding graphene by using high-resolution angle-resolved photoemission spectroscopy. We see the electron-electron and electron-phonon interactions go through substantial changes when the semimetallic regime is approached, including renormalizations due to strong electron-electron interactions with similarities to marginal Fermi liquid behavior. These findings set a new benchmark in our understanding of many-body physics in graphene and a variety of novel materials with Dirac fermions.

10.
Nano Converg ; 11(1): 14, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622355

RESUMO

Tunability of interfacial effects between two-dimensional (2D) crystals is crucial not only for understanding the intrinsic properties of each system, but also for designing electronic devices based on ultra-thin heterostructures. A prerequisite of such heterostructure engineering is the availability of 2D crystals with different degrees of interfacial interactions. In this work, we report a controlled epitaxial growth of monolayer TaSe2 with different structural phases, 1H and 1 T, on a bilayer graphene (BLG) substrate using molecular beam epitaxy, and its impact on the electronic properties of the heterostructures using angle-resolved photoemission spectroscopy. 1H-TaSe2 exhibits significant charge transfer and band hybridization at the interface, whereas 1 T-TaSe2 shows weak interactions with the substrate. The distinct interfacial interactions are attributed to the dual effects from the differences of the work functions as well as the relative interlayer distance between TaSe2 films and BLG substrate. The method demonstrated here provides a viable route towards interface engineering in a variety of transition-metal dichalcogenides that can be applied to future nano-devices with designed electronic properties.

11.
Nat Commun ; 15(1): 3971, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729931

RESUMO

The Berry curvature dipole (BCD) serves as a one of the fundamental contributors to emergence of the nonlinear Hall effect (NLHE). Despite intense interest due to its potential for new technologies reaching beyond the quantum efficiency limit, the interplay between BCD and NLHE has been barely understood yet in the absence of a systematic study on the electronic band structure. Here, we report NLHE realized in NbIrTe4 that persists above room temperature coupled with a sign change in the Hall conductivity at 150 K. First-principles calculations combined with angle-resolved photoemission spectroscopy (ARPES) measurements show that BCD tuned by the partial occupancy of spin-orbit split bands via temperature is responsible for the temperature-dependent NLHE. Our findings highlight the correlation between BCD and the electronic band structure, providing a viable route to create and engineer the non-trivial Hall effect by tuning the geometric properties of quasiparticles in transition-metal chalcogen compounds.

12.
Nano Converg ; 10(1): 32, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37418068

RESUMO

The thermoelectric performance of SnSe strongly depends on its low-energy electron band structure that provides high density of states in a narrow energy window due to the multi-valley valence band maximum (VBM). Angle-resolved photoemission spectroscopy measurements, in conjunction with first-principles calculations, reveal that the binding energy of the VBM of SnSe is tuned by the population of Sn vacancy, which is determined by the cooling rate during the sample growth. The VBM shift follows precisely the behavior of the thermoelectric power factor, while the effective mass is barely modified upon changing the population of Sn vacancies. These findings indicate that the low-energy electron band structure is closely correlated with the high thermoelectric performance of hole-doped SnSe, providing a viable route toward engineering the intrinsic defect-induced thermoelectric performance via the sample growth condition without an additional ex-situ process.

13.
Nat Commun ; 14(1): 1116, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849499

RESUMO

The excitonic insulator (EI) is a Bose-Einstein condensation (BEC) of excitons bound by electron-hole interaction in a solid, which could support high-temperature BEC transition. The material realization of EI has been challenged by the difficulty of distinguishing it from a conventional charge density wave (CDW) state. In the BEC limit, the preformed exciton gas phase is a hallmark to distinguish EI from conventional CDW, yet direct experimental evidence has been lacking. Here we report a distinct correlated phase beyond the 2×2 CDW ground state emerging in monolayer 1T-ZrTe2 and its investigation by angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy (STM). The results show novel band- and energy-dependent folding behavior in a two-step process, which is the signatures of an exciton gas phase prior to its condensation into the final CDW state. Our findings provide a versatile two-dimensional platform that allows tuning of the excitonic effect.

14.
Adv Mater ; 34(38): e2204579, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35902365

RESUMO

The spontaneous formation of electronic orders is a crucial element for understanding complex quantum states and engineering heterostructures in 2D materials. A novel 19 $\sqrt {19} $ × 19 $\sqrt {19} $ charge order in few-layer-thick 1T-TaTe2 transition metal dichalcogenide films grown by molecular beam epitaxy, which has not been realized, is report. The photoemission and scanning probe measurements demonstrate that monolayer 1T-TaTe2 exhibits a variety of metastable charge density wave orders, including the 19 $\sqrt {19} $ × 19 $\sqrt {19} $ superstructure, which can be selectively stabilized by controlling the post-growth annealing temperature. Moreover, it is found that only the 19 $\sqrt {19} $ × 19 $\sqrt {19} $ order persists in 1T-TaTe2 films thicker than a monolayer, up to 8 layers. The findings identify the previously unrealized novel electronic order in a much-studied transition metal dichalcogenide and provide a viable route to control it within the epitaxial growth process.

15.
Nat Commun ; 13(1): 906, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35173153

RESUMO

Monolayers of two-dimensional van der Waals materials exhibit novel electronic phases distinct from their bulk due to the symmetry breaking and reduced screening in the absence of the interlayer coupling. In this work, we combine angle-resolved photoemission spectroscopy and scanning tunneling microscopy/spectroscopy to demonstrate the emergence of a unique insulating 2 × 1 dimer ground state in monolayer 1T-IrTe2 that has a large band gap in contrast to the metallic bilayer-to-bulk forms of this material. First-principles calculations reveal that phonon and charge instabilities as well as local bond formation collectively enhance and stabilize a charge-ordered ground state. Our findings provide important insights into the subtle balance of interactions having similar energy scales that occurs in the absence of strong interlayer coupling, which offers new opportunities to engineer the properties of 2D monolayers.

16.
Nat Commun ; 10(1): 3382, 2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31358753

RESUMO

Chalcogen vacancies are generally considered to be the most common point defects in transition metal dichalcogenide (TMD) semiconductors because of their low formation energy in vacuum and their frequent observation in transmission electron microscopy studies. Consequently, unexpected optical, transport, and catalytic properties in 2D-TMDs have been attributed to in-gap states associated with chalcogen vacancies, even in the absence of direct experimental evidence. Here, we combine low-temperature non-contact atomic force microscopy, scanning tunneling microscopy and spectroscopy, and state-of-the-art ab initio density functional theory and GW calculations to determine both the atomic structure and electronic properties of an abundant chalcogen-site point defect common to MoSe2 and WS2 monolayers grown by molecular beam epitaxy and chemical vapor deposition, respectively. Surprisingly, we observe no in-gap states. Our results strongly suggest that the common chalcogen defects in the described 2D-TMD semiconductors, measured in vacuum environment after gentle annealing, are oxygen substitutional defects, rather than vacancies.

17.
Sci Rep ; 8(1): 15322, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30333501

RESUMO

We investigate the electronic structure of BaMnBi2 and BaZnBi2 using angle-resolved photoemission spectroscopy and first-principles calculations. Although they share similar structural properties, we show that their electronic structure exhibit dramatic differences. A strong anisotropic Dirac dispersion is revealed in BaMnBi2 with a decreased asymmetry factor compared with other members of AMnBi2 (A = alkali earth or rare earth elements) family. In addition to the Dirac cones, multiple bands crossing the Fermi energy give rise to a complex Fermi surface topology for BaZnBi2. We further show that the strength of hybridization between Bi-p and Mn-d/Zn-s states is the main driver of the differences in electronic structure for these two related compounds.

18.
Nanoscale ; 9(32): 11498-11503, 2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28766659

RESUMO

The interaction between graphene and substrates provides a viable route to enhance the functionality of both materials. Depending on the nature of electronic interaction at the interface, the electron band structure of graphene is strongly influenced, allowing us to make use of the intrinsic properties of graphene or to design additional functionalities in graphene. Here, we present an angle-resolved photoemission study on the interaction between graphene and a platinum substrate. The formation of an interface between graphene and platinum leads to a strong deviation in the electronic structure of graphene not only from its freestanding form but also from the behavior observed on typical metals. The combined study on the experimental and theoretical electron band structure unveils the unique electronic properties of graphene on a platinum substrate, which singles out graphene/platinum as a model system investigating graphene on a metallic substrate with strong interaction.

19.
J Phys Condens Matter ; 28(45): 454001, 2016 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-27617696

RESUMO

Few-layer thick MoSe2 and WSe2 possess non-trivial spin textures with sizable spin splitting due to the inversion symmetry breaking embedded in the crystal structure and strong spin-orbit coupling. We report a spin-resolved photoemission study of MoSe2 and WSe2 thin film samples epitaxially grown on a bilayer graphene substrate. We only found spin polarization in the single- and trilayer samples-not in the bilayer sample-mostly along the out-of-plane direction of the sample surface. The measured spin polarization is found to be strongly dependent on the light polarization as well as the measurement geometry, which reveals intricate coupling between the spin and orbital degrees of freedom in this class of material.

20.
Sci Rep ; 6: 21460, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26888720

RESUMO

The interaction between two different materials can present novel phenomena that are quite different from the physical properties observed when each material stands alone. Strong electronic correlations, such as magnetism and superconductivity, can be produced as the result of enhanced Coulomb interactions between electrons. Two-dimensional materials are powerful candidates to search for the novel phenomena because of the easiness of arranging them and modifying their properties accordingly. In this work, we report magnetic effects in graphene, a prototypical non-magnetic two-dimensional semi-metal, in the proximity with sulfur, a diamagnetic insulator. In contrast to the well-defined metallic behaviour of clean graphene, an energy gap develops at the Fermi energy for the graphene/sulfur compound with decreasing temperature. This is accompanied by a steep increase of the resistance, a sign change of the slope in the magneto-resistance between high and low fields, and magnetic hysteresis. A possible origin of the observed electronic and magnetic responses is discussed in terms of the onset of low-temperature magnetic ordering. These results provide intriguing insights on the search for novel quantum phases in graphene-based compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA