RESUMO
Foot-and-mouth disease (FMD) is an acute contagious disease that affects cloven-hoofed animals and has severe global economic consequences. FMD is most commonly controlled by vaccination. Currently available commercial FMD vaccines contain chemically inactivated whole viruses, which are thought to be slow acting as they are effective only 4 to 7 days following vaccination. Hence, the development of a novel rapid vaccine or alternative measures, such as antiviral agents or the combination of vaccines and antiviral agents for prompt FMD virus (FMDV) outbreak containment, is desirable. Here, we constructed a recombinant baculovirus (BacMam) expressing consensus porcine interferon alpha (IFN-α) that has three additional N-glycosylation sites driven by a cytomegalovirus immediate early (CMV-IE) promoter (Bac-Con3N IFN-α) for protein expression in mammalian cells. Bac-Con3N IFN-α expressing highly glycosylated porcine IFN-α protein increased the duration of antiviral effects. We evaluated the antiviral effects of Bac-Con3N IFN-α in swine cells and mice and observed sustained antiviral effects in pig serum; additionally, Bac-Con3N IFN-α exhibited sustained antiviral effects in vivo as well as adjuvant effects in combination with an inactivated FMD vaccine. Pigs injected with a combination of Bac-Con3N IFN-α and the inactivated FMD vaccine were protected against FMDV at 1, 3, and 7 days postvaccination. Furthermore, we observed that in combination with the inactivated FMD vaccine, Bac-Con3N IFN-α increased neutralizing antibody levels in mice and pigs. Therefore, we suggest that Bac-Con3N IFN-α is a strong potential antiviral and adjuvant candidate for use in combination with inactivated FMD vaccines to protect pigs against FMDV. IMPORTANCE Early inhibition of foot-and-mouth disease (FMD) virus (FMDV) replication in pigs is highly desirable as FMDV transmission and shedding rates are higher in pigs than in cattle. However, commercial FMD vaccines require at least 4 to 7 days postvaccination (dpv) for protection, and animals are vulnerable to heterologous viruses before acquiring high antibody levels after the second vaccination. Therefore, the development of antiviral agents for use in combination with FMD vaccines is essential. We developed a novel antiviral and immunostimulant, Bac-Con3N IFN-α, which is a modified porcine IFN-α-expressing recombinant baculovirus, to improve IFN stability and allow its direct delivery to animals. We present a promising candidate for use in combination with inactivated FMD vaccines as pigs applied to the strategy had early protection against FMDV at 1 to 7 dpv, and their neutralizing antibody levels were higher than those in pigs administered the vaccine only.
Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Interferon-alfa , Vacinas Virais , Adjuvantes Imunológicos/farmacologia , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Antivirais/farmacologia , Baculoviridae , Febre Aftosa/imunologia , Febre Aftosa/prevenção & controle , Interferon-alfa/farmacologia , Camundongos , Suínos , Vacinas de Produtos InativadosRESUMO
BACKGROUND: Hospital-acquired pressure injuries are strongly associated with surgeries performed under general anesthesia. AIMS: The aim of this study was to evaluate the effects of using a prophylactic multi-layer soft silicone foam dressing in non-critically ill patients with a Braden Scale score of ≤18 after undergoing routine surgery without sacral pressure injuries. METHODS: This randomized controlled trial included 156 patients who were admitted for surgery under general anesthesia in a tertiary general hospital. The patients were divided into a control group and an intervention group. A 5-layer soft silicone foam dressing was applied to the sacrum of patients in the intervention group immediately after surgery. For the control group, standard pressure injury prevention activities were performed alongside standard care without preventive dressings. RESULTS: There were no significant differences in general and clinical characteristics between the two groups; however, the incidence of pressure injury and blanching erythema was higher in the control group, showing a significant difference from the experimental group. Factors influencing the development of pressure injuries and blanching erythema through multivariate regression analysis were prophylactic dressing application and Braden Scale score at the time of admission. A statistically significant difference was noted in survival time from pressure injury between both groups. LINKING EVIDENCE TO ACTION: The incidence of pressure injuries and blanching erythema was lower when the prophylactic dressing was applied with standard protocol for general ward patients after surgery. Accurate evaluation of the patient's skin condition and pressure injury risk assessment before surgery are important. Progressive prophylactic dressings to prevent pressure injuries are effective, and tailored nursing interventions based on accurate assessment of patient's skin condition and risk factors are essential for maintaining skin integrity.
Assuntos
Úlcera por Pressão , Humanos , Úlcera por Pressão/etiologia , Úlcera por Pressão/prevenção & controle , Úlcera por Pressão/epidemiologia , Sacro/cirurgia , Silicones/uso terapêutico , Bandagens/efeitos adversos , HospitalizaçãoRESUMO
Recent research on the mechanochemistry of metallocene mechanophores has shed light on the force-responsiveness of these thermally and chemically stable organometallic compounds. In this work, we report a combination of experimental and computational studies on the mechanochemistry of main-chain cobaltocenium-containing polymers. Ester derivatives of the cationic cobaltocenium, though isoelectronic to neutral ferrocene, are unstable in the nonmechanical control experimental conditions that were accommodated by their ferrocene analogs. Replacing the electron withdrawing C-ester linkages with electron-donating C-alkyls conferred the necessary stability and enabled the mechanochemistry of the cobaltocenium to be assessed. Despite their high bond dissociation energy, cobaltocenium mechanophores are found to be selective sites of main chain scission under sonomechanical activation. Computational CoGEF calculations suggest that the presence of a counterion to cobaltocenium plays a vital role by promoting a peeling mechanism of dissociation in conjunction with the initial slipping.
RESUMO
Site-specific cobaltocenium-labeled polymers are synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization using cobaltocenium-labeled chain transfer agents. These chain transfer agents show counterion-dependent solubility. Based on the chemical structure of the chain transfer agents, single cobaltocenium moieties are dictated to be in predetermined locations at either the center or terminals of the polymer chains. Polymerization of hydrophobic monomers (methyl methacrylate, methyl acrylate and styrene) and hydrophilic monomers (2-(dimethylamino)ethyl methacrylate and methacrylic acid) is demonstrated to follow a controlled manner based on kinetic studies. Cobaltocenium-labeled polymers with molecular weights greater than 100,000 Da can be prepared by using a difunctional chain transfer agent. Photophysical properties, electrochemical properties, thermal properties and morphology of the cobaltocenium-labeled polymers are also investigated.
RESUMO
Proton transfer polymerization between thiol and epoxide groups is shown to be an adaptable and utilitarian method for the synthesis of hydrogels. For instance, the polymerization catalyst can be organic or inorganic, and the polymerization medium can be pure water, buffer solutions, or organic solvents. The gelation mechanism can be triggered at ambient conditions, at a physiological temperature of 37 °C, or through using light as an external stimulus. The ambient and photochemical methods both allow for nanoimprint lithography to produce freestanding patterned thick films. The required thiol- and epoxide-carrying precursors can be chosen from a long list of commercially available small molecular as well as polymeric materials. The water uptake, mechanical, and biodegradation properties of the gels can, therefore, be tuned through the choice of appropriate gelation precursors and polymerization conditions. Finally, the thio-ether groups of the cross-linked networks can be functionalized through a postgelation modification reaction to access sulfonium-based cationic structures. Such structural changes endow antibacterial properties to the networks. In their pristine form, however, the gels are biocompatible and nonadhesive, allowing cancer cells to grow in a cluster formation.
RESUMO
During an outbreak of foot-and-mouth disease (FMD), real-time reverse transcription-PCR (rRT-PCR) is the most commonly used diagnostic method to detect viral RNA. However, while this assay is often conducted during the outbreak period, there is an inevitable risk of carryover contamination. This study shows that the carryover contamination can be prevented by the use of target-specific restriction endonuclease in that assay.
Assuntos
Enzimas de Restrição do DNA/metabolismo , Descontaminação/métodos , Contaminação de Equipamentos , Vírus da Febre Aftosa/isolamento & purificação , Febre Aftosa/diagnóstico , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Animais , Febre Aftosa/epidemiologiaRESUMO
Foot-and-mouth disease (FMD) is an economically important disease, and the FMD virus (FMDV) can spread rapidly in susceptible animals. FMD is usually controlled through vaccination. However, commercial FMD vaccines are only effective 4-7 days after vaccination. Furthermore, FMDV comprises seven serotypes and various topotypes, and these aspects should be considered when selecting a vaccine. Antiviral agents could provide rapid and broad protection against FMDV. Therefore, this study aimed to develop a fusion protein of consensus porcine interferon-α and Fc portion of porcine antibody IgG (poIFN-α-Fc) using a baculovirus expression system to develop a novel antiviral agent against FMDV. We measured the antiviral effects of the poIFN-α-Fc protein against FMDV and the enhanced duration in vitro and in vivo. The broad-spectrum antiviral effects were tested against seven FMDV serotypes, porcine reproductive and respiratory syndrome virus (PRRSV), and bovine enterovirus (BEV). Furthermore, the early protective effects and neutralizing antibody levels were tested by co-injecting poIFN-α-Fc and an FMD-inactivated vaccine into mice or pigs. Sustained antiviral effects in pig sera and mice were observed, and pigs injected with a combination of the poIFN-α-Fc and an inactivated FMD vaccine were protected against FMDV in a dose-dependent manner at 2- and 4-days post-vaccination. In addition, combined with the inactivated FMD vaccine, poIFN-α-Fc increased the neutralizing antibody levels in mice. Therefore, poIFN-α-Fc is a potential broad-spectrum antiviral and adjuvant candidate that can be used with inactivated FMD vaccines to protect pigs against FMDV.
Assuntos
Vírus da Febre Aftosa , Vacinas , Bovinos , Suínos , Animais , Camundongos , Interferon-alfa/farmacologia , Anticorpos Neutralizantes , Imunoglobulina G , Antivirais/farmacologiaRESUMO
In South Korea, a mandatory nation-wide foot-and-mouth disease (FMD) vaccination policy is in place. However, a major side effect of the current method of intramuscular (IM) administration of oil-adjuvanted FMD vaccines is the formation of granulomas in the muscles of pigs. To address this issue, we assessed the possible application of intradermal (ID) vaccination. Initially, we compared the serological immune response in specific pathogen-free pigs inoculated with FMD vaccines formulated with eight different adjuvants, administered twice at the neck site using a syringe with a needle via the ID route. Among the formulations (water-in-oil-in-water (W/O/W), oil-in-water (O/W), and polymer nanomaterials), ISA 207 of W/O/W was the most effective in inducing immunogenicity followed by ISA 201 of W/O/W. ISA 207 was further tested in formulations of different antigen doses (12 or 1.2 µg) delivered via both IM and ID routes. All four treatments successfully protected the pigs against FMD virus challenges. To assess the feasibility of the field application of the vaccines with ISA 207, we conducted ID vaccination of conventional pigs using a needle-free device, resulting in the detection of significant levels of neutralizing antibodies. ISA 207 was shown to be superior to ISA 201 in inducing immunogenicity via the ID route. In conclusion, ISA 207 could be a suitable adjuvant for ID vaccination in terms of vaccine efficacy for FMD, allowing for alternate use of ID vaccination and subsequent reduction in the incidences of granuloma formation in the field.
RESUMO
Foot-and-mouth disease virus (FMDV) is a highly contagious virus that affects cloven-hoofed animals and causes severe economic losses in the livestock industry. Given that this high-risk pathogen has to be handled in a biosafety level (BSL)-3 facility for safety reasons and the limited availability of BSL-3 laboratories, experiments on FMDV call for more attention. Therefore, we aimed to develop an FMDV experimental model that can be handled in BSL-2 laboratories. The NanoBiT luciferase (Nano-luc) assay is a well-known assay for studying protein-protein interactions. To apply the NanoBiT split luciferase assay to the diagnosis and evaluation of FMD, we developed an inactivated HiBiT-tagged Asia1 Shamir FMDV (AS-HiBiT), a recombinant Asia1 shamir FMDV with HiBiT attached to the VP1 region of Asia1 shamir FMDV. In addition, we established LgBiT-expressing LF-BK cell lines, termed LgBit-LF-BK cells. It was confirmed that inactivated AS-HiBiT infected LgBiT-LF-BK cells and produced a luminescence signal by binding to the intracellular LgBiT of LgBiT-LF-BK cells. In addition, the luminescence signal became stronger as the number of LgBiT-LF-BK cells increased or the concentration of inactivated AS-HiBiT increased. Moreover, we confirmed that inactivated AS-HiBiT can detect seroconversion in sera positive for FMDV-neutralizing antibodies. This NanoBiT split luciferase assay system can be used for the diagnosis and evaluation of FMD and expanded to FMD-like virus models to facilitate the evaluation of FMDV vaccines and antibodies.
Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Linhagem Celular , Febre Aftosa/diagnóstico , Febre Aftosa/virologia , Vírus da Febre Aftosa/genética , Luciferases/genética , Luciferases/metabolismoRESUMO
Bio-based packaging materials are promising alternatives to petroleum-based plastics. Paper-based packaging materials are candidates for improving food sustainability; however, paper has poor gas and water vapor barrier properties. In this study, entirely bio-based sodium caseinate (CasNa)-coated papers with two plasticizers, glycerol (GY) and sorbitol (SO), were prepared. The morphological and chemical structure, burst strength, tensile strength, elongation at break, air permeability, surface properties, and thermal stability of the pristine CasNa-, CasNa/GY-, and CasNa/SO-coated papers were evaluated. The use of GY and SO strongly affected the tensile strength, elongation at break, and air barrier of the CasNa/GY- and CasNa/SO-coated paper. The air barrier and flexibility of the CasNa/GY-coated papers were higher than those of the CasNa/SO-coated papers. Compared to SO, GY better coated and penetrated the CasNa matrix, which positively affected the chemical and morphological structure of the coating layer and the interaction between the coating layer and paper. Overall, CasNa/GY was superior to the CasNa/SO coating. CasNa/GY-coated papers may be a good alternative for packaging materials in the food, medical, and electronic sectors, which would promote sustainability.
RESUMO
Facial amphiphilicity is an extraordinary chemical structure feature of a variety of antimicrobial peptides and polymers. Vast efforts have been dedicated to small molecular, macromolecular and dendrimer-like systems to mimic this highly preferred structure or conformation, including local facial amphiphilicity and global amphiphilicity. This work conceptualizes Facial Amphiphilicity Index (FAI) as a numerical value to quantitatively characterize the measure of chemical compositions and structural features in dictating antimicrobial efficacy. FAI is a ratio of numbers of charges to rings, representing both compositions of hydrophilicity and hydrophobicity. Cationic derivatives of multicyclic compounds were evaluated as model systems for testing antimicrobial selectivity against Gram-negative and Gram-positive bacteria. Both monocyclic and bicyclic compounds are non-antimicrobial regardless of FAIs. Antimicrobial efficacy was observed with systems having larger cross-sectional areas including tricyclic abietic acid and tetracyclic bile acid. While low and high FAIs respectively lead to higher and lower antimicrobial efficacy, in consideration of cytotoxicity, the sweet spot is typically suited with intermediate FAIs for each specific system. This can be well explained by the synergistic hydrophobic-hydrophobic and electrostatic interactions with bacterial cell membranes and the difference between bacterial and mammalian cell membranes. The adoption of FAI would pave a new avenue toward the design of next-generation antimicrobial macromolecules and peptides.
RESUMO
Among multiple approaches to combating antimicrobial resistance, a combination therapy of existing antibiotics with bacterial membrane-perturbing agents is promising. A viable platform of metallopolymers as adjuvants in combination with traditional antibiotics is reported in this work to combat both planktonic and stationary cells of Gram-negative superbugs and their biofilms. Antibacterial efficacy, toxicity, antibiofilm activity, bacterial resistance propensity, and mechanisms of action of metallopolymer-antibiotic combinations are investigated. These metallopolymers exhibit 4-16-fold potentiation of antibiotics against Gram-negative bacteria with negligible toxicity toward mammalian cells. More importantly, the lead combinations (polymer-ceftazidime and polymer-rifampicin) eradicate preformed biofilms of MDR E. coli and P. aeruginosa, respectively. Further, ß-lactamase inhibition, outer membrane permeabilization, and membrane depolarization demonstrate synergy of these adjuvants with different antibiotics. Moreover, the membrane-active metallopolymers enable the antibiotics to circumvent bacterial resistance development. Altogether, the results indicate that such non-antibiotic adjuvants bear the promise to revitalize the efficacy of existing antibiotics to tackle Gram-negative bacterial infections.
Assuntos
Antibacterianos , Escherichia coli , Animais , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Polímeros/farmacologia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla , MamíferosRESUMO
Compared with single-network hydrogels, double-network hydrogels offer higher mechanical strength and toughness. Integrating useful functions into double-network hydrogels can expand the portfolios of the hydrogels. We report the preparation of double-network metallopolymer hydrogels with remarkable hydration, antifouling, and antimicrobial properties. These cationic hydrogels are composed of a first network of cationic cobaltocenium polyelectrolytes and a second network of polyacrylamide, all prepared via radical polymerization. Antibiotics were further installed into the hydrogels via ion-complexation with metal cations. These hydrogels exhibited significantly enhanced hydration, compared with polyacrylamide-based hydrogels, while featuring robust mechanical strength. Cationic metallopolymer hydrogels exhibited strong antifouling against oppositely charged proteins. These antibiotic-loaded hydrogels demonstrated a synergistic effect on the inhibition of bacterial growth and antifouling of bacteria, as a result of the unique ion complexation of cobaltocenium cations.
RESUMO
The purpose of this study was to explore different patterns of functional networks between amnestic mild cognitive impairment (aMCI) and non-aMCI (naMCI) using electroencephalography (EEG) graph theoretical analysis. The data of 197 drug-naïve individuals who complained cognitive impairment were reviewed. Resting-state EEG data was acquired. Graph analyses were performed and compared between aMCI and naMCI, as well as between early and late aMCI. Correlation analyses were conducted between the graph measures and neuropsychological test results. Machine learning algorithms were applied to determine whether the EEG graph measures could be used to distinguish aMCI from naMCI. Compared to naMCI, aMCI showed higher modularity in the beta band and lower radius in the gamma band. Modularity was negatively correlated with scores on the semantic fluency test, and the radius in the gamma band was positively correlated with visual memory, phonemic, and semantic fluency tests. The naïve Bayes algorithm classified aMCI and naMCI with 89% accuracy. Late aMCI showed inefficient and segregated network properties compared to early aMCI. Graph measures could differentiate aMCI from naMCI, suggesting that these measures might be considered as predictive markers for progression to Alzheimer's dementia in patients with MCI.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Neuroblastoma , Doença de Alzheimer/diagnóstico , Teorema de Bayes , Eletroencefalografia , Humanos , Testes NeuropsicológicosRESUMO
There are seven viral serotypes of foot-and-mouth disease virus (FMDV): A, O, C, Asia 1, and Southern African Territories 1, 2, and 3 (SAT 1-3). Unlike serotype O FMDV vaccine strains, vaccine strains of serotype A FMDV do not provide broad-range cross-reactivity in serological matching tests with field isolates. Therefore, the topotype/lineage vaccine strain circulating in many countries and a highly immunogenic strain might be advantageous to control serotype A FMDV. We developed a new vaccine strain, A/SKR/Yeoncheon/2017 (A-1), which belongs to the A/ASIA/Sea-97 lineage that frequently occurs in Asian countries. Using virus plaque purification, we selected a vaccine virus with high antigen productivity and the lowest numbers of P1 mutations among cell-adapted virus populations. The A/SKR/Yeoncheon/2017 (A-1) vaccine strain has a single amino acid mutation, VP2 E82K, in the P1 region, and it is perfectly adapted to suspension culture. The A/SKR/Yeoncheon/2017 (A-1) experimental vaccine conferred high immunogenicity in pigs. The vaccine strain was serologically matched with various field isolates in two-dimensional virus neutralization tests using bovine serum. Vaccinated mice were protected against an A/MAY/97 virus that was serologically mismatched with the vaccine strain. Thus, A/SKR/Yeoncheon/2017 (A-1) might be a promising vaccine candidate for protection against the emerging FMDV serotype A in Asia.
RESUMO
The purpose of this study was to identify the mechanisms underlying effects of coffee on cognition in the context of brain networks. Here we investigated functional connectivity before and after drinking coffee using graph-theoretic analysis of electroencephalography (EEG). Twenty-one healthy adults voluntarily participated in this study. The resting-state EEG data and results of neuropsychological tests were consecutively acquired before and 30 min after coffee consumption. Graph analyses were performed and compared before and after coffee consumption. Correlation analyses were conducted to assess the relationship between changes in graph measures and those in cognitive function tests. Functional connectivity (FC) was reorganized toward more efficient network properties after coffee consumption. Performance in Digit Span tests and Trail Making Test Part B improved after coffee consumption, and the improved performance in executive function was correlated with changes in graph measures, reflecting a shift toward efficient network properties. The beneficial effects of coffee on cognitive function might be attributed to the reorganization of FC toward more efficient network properties. Based on our findings, the patterns of network reorganization could be used as quantitative markers to elucidate the mechanisms underlying the beneficial effects of coffee on cognition, especially executive function.
Assuntos
Encéfalo , Café , Adulto , Cognição , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Testes NeuropsicológicosRESUMO
Foot-and-mouth disease (FMD) is an economically devastating animal disease. There are seven serotypes, A, O, C, Asia 1, Southern African Territories 1, 2, and 3 (SAT1, SAT2, and SAT3), among which serotype O shows the greatest distribution worldwide. Specifically, the O/ME-SA/Ind-2001 lineage, which was reported in India in 2001, has since emerged worldwide, with the O/ME-SA/Ind-2001d and O/ME-SA/Ind-2001e sublineages recently emerging in North Africa, Middle East Asia, Southeast Asia, and East Asia. The antigenic relationship (r1) value for the O1 Manisa and O/Mya-98 lineage inactivated vaccine against various O/ME-SA/Ind-2001 lineages of FMDV isolates, were matching (r1 > 0.3) or non-matching (r1 < 0.3), indicating that the vaccine based on the O/ME-SA/Ind-2001 lineage FMDV, is valuable. In this study, we developed a new vaccine strain, O/SKR/Boeun/2017 isolate, belonging to the O/ME-SA/Ind-2001e sublineage as an outbreak of this sublineage occurred in 2017 in the Boeun county of the Republic of Korea (O/SKR/Boeun/2017). This experimental vaccine exhibited high immunogenicity in pigs and cattle and was antigenically matched with representative FMDV lineages (ME-SA, O/ME-SA/PanAsia, O/SEA/Mya-98, and O/Cathay) in Asia, as demonstrated by two-dimensional virus neutralization tests (2D-VNT). In addition, a 100% survival rate in C56BL/6 mice vaccinated with 1/15 of a pig dose was observed following challenge with FMDV O/VIT/2013 (O/ME-SA/PanAsia) at 10 days post-vaccination. Further, we analyzed the major antigenic sites of the O/SKR/Boeun/2017 vaccine strain as well as other viruses, by 2D-VNT. These results suggest that the O/ME-SA/Ind-2001e sublineage is a promising vaccine strain candidate in Asia, and other countries, for protection against the emerging FMDV.
Assuntos
Antígenos Virais/imunologia , Vírus da Febre Aftosa/imunologia , Febre Aftosa/prevenção & controle , Imunogenicidade da Vacina , Vacinas Virais/imunologia , Animais , Bovinos , Linhagem Celular , Cricetinae , Feminino , Febre Aftosa/imunologia , Cabras , Rim/citologia , Camundongos , Camundongos Endogâmicos C57BL , Testes de Neutralização , Suínos , Vacinação , Vacinas Virais/administração & dosagemRESUMO
Foot-and-mouth disease (FMD) is an economically devastating animal disease. Adapting the field virus to cells is critical to the vaccine production of FMD viruses (FMDV), and heparan sulfate (HS) and Jumonji C-domain-containing protein 6 (JMJD6) are alternative receptors of cell-adapted FMDV. We performed serial passages of FMDV O/SKR/Andong/2010, classified as the O/Mya-98 topotype/lineage and known as a highly virulent strain, to develop a vaccine seed virus. We traced changes in the amino acid sequences of the P1 region, plaque phenotypes, and the receptor usage of the viruses, and then structurally analyzed the mutations. VP3 H56R and D60G mutations were observed in viruses using the HS receptor and led to changes in the hydrogen bonding between VP3 56 and 60. A VP1 P208L mutation was observed in the virus using the JMJD6 receptor during cell adaptation, enabling the interaction with JMJD6 through the formation of a new hydrogen bond with JMJD6 residue 300. Furthermore, VP1 208 was near the VP1 95/96 amino acids, previously reported as critical mutations for JMJD6 receptor interactions. Thus, the mutation at VP1 208 could be critical for cell adaptation related to the JMJD6 receptor and may serve as a basis for mechanism studies on FMDV cell adaptation.
Assuntos
Vírus da Febre Aftosa/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Mutação , Receptores Virais/metabolismo , Sequência de Aminoácidos , Animais , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Linhagem Celular , Cricetinae , Febre Aftosa/virologia , Heparitina Sulfato/metabolismo , Simulação de Acoplamento Molecular , Domínios e Motivos de Interação entre Proteínas , Sorogrupo , Vacinas ViraisRESUMO
The complete genome sequence of a foot-and-mouth disease virus (FMDV) found in an isolate collected in northern Vietnam in 2013 appears to be closely related to a genetic cluster formed with isolates from China, Mongolia, and Russia in 2013. All of these are classified to fall within the Sea-97 lineage, for which little complete genome data are available.
RESUMO
We cloned the full-length cDNA of O Manisa, the virus for vaccinating against foot-and-mouth disease. The antigenic properties of the virus recovered from the cDNA were similar to those of the parental virus. Pathogenesis did not appear in the pigs, dairy goats or suckling mice, but neutralizing antibodies were raised 5-6 days after the virus challenge. The utilization of O Manisa as a safe vaccine strain will increase if recombinant viruses can be manipulated by inserting or removing a marker gene for differential serology or replacing the protective gene from another serotype.