Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(24)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36560332

RESUMO

In this paper, we present a framework to learn illumination patterns to improve the quality of signal recovery for coded diffraction imaging. We use an alternating minimization-based phase retrieval method with a fixed number of iterations as the iterative method. We represent the iterative phase retrieval method as an unrolled network with a fixed number of layers where each layer of the network corresponds to a single step of iteration, and we minimize the recovery error by optimizing over the illumination patterns. Since the number of iterations/layers is fixed, the recovery has a fixed computational cost. Extensive experimental results on a variety of datasets demonstrate that our proposed method significantly improves the quality of image reconstruction at a fixed computational cost with illumination patterns learned only using a small number of training images.


Assuntos
Algoritmos , Diagnóstico por Imagem , Processamento de Imagem Assistida por Computador/métodos
2.
IEEE J Biomed Health Inform ; 22(2): 450-459, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-27893403

RESUMO

Heart rate (HR) monitoring using photoplethysmographic (PPG) signals recorded from wearers' wrist greatly facilitates design of wearable devices and maximizes user experience. However, placing PPG sensors in wrist causes much stronger and complicated motion artifacts (MA) due to loose interface between sensors and skin. Therefore, developing robust HR estimation algorithms for wrist-type PPG signals has significant commercial values. In this paper, we propose a robust HR estimation algorithm for wrist-type PPG signals using multiple reference adaptive noise cancellation (ANC) technique-termed here as "MURAD." The main challenge of using ANC for MA reduction is to devise a qualified reference noise signal (RNS) to the adaptive filter. We propose a novel solution by using four RNSs, namely, the three-axis accelerometer data and the difference signal between the two PPG signals. For each RNS, we get a different version of the cleaned PPG signal. Then, a set of probable HR values is estimated using all of the cleaned PPG signals, and then, the value that is closest to the estimated HR of the previous time window is chosen to be the HR estimate of the current window. Then, some peak verification techniques are employed to ensure accurate HR estimations. The proposed technique gives lower average absolute error compared to state-of-the art methods. So, MURAD method provides a promising solution to the challenge of HR monitoring using PPG in wearable devices during severe MA conditions.


Assuntos
Frequência Cardíaca/fisiologia , Fotopletismografia/métodos , Processamento de Sinais Assistido por Computador , Punho/fisiologia , Artefatos , Feminino , Humanos , Análise dos Mínimos Quadrados , Pessoa de Meia-Idade , Modelos Cardiovasculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA