Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Photochem Photobiol Sci ; 23(6): 1087-1115, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38763938

RESUMO

The protection of Earth's stratospheric ozone (O3) is an ongoing process under the auspices of the universally ratified Montreal Protocol and its Amendments and adjustments. A critical part of this process is the assessment of the environmental issues related to changes in O3. The United Nations Environment Programme's Environmental Effects Assessment Panel provides annual scientific evaluations of some of the key issues arising in the recent collective knowledge base. This current update includes a comprehensive assessment of the incidence rates of skin cancer, cataract and other skin and eye diseases observed worldwide; the effects of UV radiation on tropospheric oxidants, and air and water quality; trends in breakdown products of fluorinated chemicals and recent information of their toxicity; and recent technological innovations of building materials for greater resistance to UV radiation. These issues span a wide range of topics, including both harmful and beneficial effects of exposure to UV radiation, and complex interactions with climate change. While the Montreal Protocol has succeeded in preventing large reductions in stratospheric O3, future changes may occur due to a number of natural and anthropogenic factors. Thus, frequent assessments of potential environmental impacts are essential to ensure that policies remain based on the best available scientific knowledge.


Assuntos
Ozônio Estratosférico , Raios Ultravioleta , Humanos , Ozônio Estratosférico/análise , Raios Ultravioleta/efeitos adversos , Ozônio/química , Mudança Climática
2.
Photochem Photobiol Sci ; 22(5): 1093-1127, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37129840

RESUMO

Variations in stratospheric ozone and changes in the aquatic environment by climate change and human activity are modifying the exposure of aquatic ecosystems to UV radiation. These shifts in exposure have consequences for the distributions of species, biogeochemical cycles, and services provided by aquatic ecosystems. This Quadrennial Assessment presents the latest knowledge on the multi-faceted interactions between the effects of UV irradiation and climate change, and other anthropogenic activities, and how these conditions are changing aquatic ecosystems. Climate change results in variations in the depth of mixing, the thickness of ice cover, the duration of ice-free conditions and inputs of dissolved organic matter, all of which can either increase or decrease exposure to UV radiation. Anthropogenic activities release oil, UV filters in sunscreens, and microplastics into the aquatic environment that are then modified by UV radiation, frequently amplifying adverse effects on aquatic organisms and their environments. The impacts of these changes in combination with factors such as warming and ocean acidification are considered for aquatic micro-organisms, macroalgae, plants, and animals (floating, swimming, and attached). Minimising the disruptive consequences of these effects on critical services provided by the world's rivers, lakes and oceans (freshwater supply, recreation, transport, and food security) will not only require continued adherence to the Montreal Protocol but also a wider inclusion of solar UV radiation and its effects in studies and/or models of aquatic ecosystems under conditions of the future global climate.


Assuntos
Perda de Ozônio , Ozônio , Animais , Humanos , Ozônio Estratosférico , Raios Ultravioleta , Mudança Climática , Ecossistema , Concentração de Íons de Hidrogênio , Plásticos , Água do Mar
3.
Photochem Photobiol Sci ; 21(3): 275-301, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35191005

RESUMO

The Environmental Effects Assessment Panel of the Montreal Protocol under the United Nations Environment Programme evaluates effects on the environment and human health that arise from changes in the stratospheric ozone layer and concomitant variations in ultraviolet (UV) radiation at the Earth's surface. The current update is based on scientific advances that have accumulated since our last assessment (Photochem and Photobiol Sci 20(1):1-67, 2021). We also discuss how climate change affects stratospheric ozone depletion and ultraviolet radiation, and how stratospheric ozone depletion affects climate change. The resulting interlinking effects of stratospheric ozone depletion, UV radiation, and climate change are assessed in terms of air quality, carbon sinks, ecosystems, human health, and natural and synthetic materials. We further highlight potential impacts on the biosphere from extreme climate events that are occurring with increasing frequency as a consequence of climate change. These and other interactive effects are examined with respect to the benefits that the Montreal Protocol and its Amendments are providing to life on Earth by controlling the production of various substances that contribute to both stratospheric ozone depletion and climate change.


Assuntos
Perda de Ozônio , Ozônio , Mudança Climática , Ecossistema , Humanos , Ozônio/química , Ozônio Estratosférico , Raios Ultravioleta
4.
Photochem Photobiol Sci ; 20(1): 1-67, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33721243

RESUMO

This assessment by the Environmental Effects Assessment Panel (EEAP) of the United Nations Environment Programme (UNEP) provides the latest scientific update since our most recent comprehensive assessment (Photochemical and Photobiological Sciences, 2019, 18, 595-828). The interactive effects between the stratospheric ozone layer, solar ultraviolet (UV) radiation, and climate change are presented within the framework of the Montreal Protocol and the United Nations Sustainable Development Goals. We address how these global environmental changes affect the atmosphere and air quality; human health; terrestrial and aquatic ecosystems; biogeochemical cycles; and materials used in outdoor construction, solar energy technologies, and fabrics. In many cases, there is a growing influence from changes in seasonality and extreme events due to climate change. Additionally, we assess the transmission and environmental effects of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is responsible for the COVID-19 pandemic, in the context of linkages with solar UV radiation and the Montreal Protocol.

5.
Photochem Photobiol Sci ; 19(5): 542-584, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32364555

RESUMO

This assessment, by the United Nations Environment Programme (UNEP) Environmental Effects Assessment Panel (EEAP), one of three Panels informing the Parties to the Montreal Protocol, provides an update, since our previous extensive assessment (Photochem. Photobiol. Sci., 2019, 18, 595-828), of recent findings of current and projected interactive environmental effects of ultraviolet (UV) radiation, stratospheric ozone, and climate change. These effects include those on human health, air quality, terrestrial and aquatic ecosystems, biogeochemical cycles, and materials used in construction and other services. The present update evaluates further evidence of the consequences of human activity on climate change that are altering the exposure of organisms and ecosystems to UV radiation. This in turn reveals the interactive effects of many climate change factors with UV radiation that have implications for the atmosphere, feedbacks, contaminant fate and transport, organismal responses, and many outdoor materials including plastics, wood, and fabrics. The universal ratification of the Montreal Protocol, signed by 197 countries, has led to the regulation and phase-out of chemicals that deplete the stratospheric ozone layer. Although this treaty has had unprecedented success in protecting the ozone layer, and hence all life on Earth from damaging UV radiation, it is also making a substantial contribution to reducing climate warming because many of the chemicals under this treaty are greenhouse gases.


Assuntos
Mudança Climática , Ozônio Estratosférico , Raios Ultravioleta , Saúde Ambiental , Humanos , Microplásticos , Nações Unidas
6.
Photochem Photobiol Sci ; 17(2): 127-179, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29404558

RESUMO

The Environmental Effects Assessment Panel (EEAP) is one of three Panels of experts that inform the Parties to the Montreal Protocol. The EEAP focuses on the effects of UV radiation on human health, terrestrial and aquatic ecosystems, air quality, and materials, as well as on the interactive effects of UV radiation and global climate change. When considering the effects of climate change, it has become clear that processes resulting in changes in stratospheric ozone are more complex than previously held. Because of the Montreal Protocol, there are now indications of the beginnings of a recovery of stratospheric ozone, although the time required to reach levels like those before the 1960s is still uncertain, particularly as the effects of stratospheric ozone on climate change and vice versa, are not yet fully understood. Some regions will likely receive enhanced levels of UV radiation, while other areas will likely experience a reduction in UV radiation as ozone- and climate-driven changes affect the amounts of UV radiation reaching the Earth's surface. Like the other Panels, the EEAP produces detailed Quadrennial Reports every four years; the most recent was published as a series of seven papers in 2015 (Photochem. Photobiol. Sci., 2015, 14, 1-184). In the years in between, the EEAP produces less detailed and shorter Update Reports of recent and relevant scientific findings. The most recent of these was for 2016 (Photochem. Photobiol. Sci., 2017, 16, 107-145). The present 2017 Update Report assesses some of the highlights and new insights about the interactive nature of the direct and indirect effects of UV radiation, atmospheric processes, and climate change. A full 2018 Quadrennial Assessment, will be made available in 2018/2019.

7.
Ecology ; 96(12): 3303-11, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26909435

RESUMO

Explaining variability in offspring vs. adult size among groups is a necessary step to determine the evolutionary and environmental constraints shaping variability in life history strategies. This is of particular interest for life in the ocean where a diversity of offspring development strategies is observed along with variability in physical and biological forcing factors in space and time. We compiled adult and offspring size for 407 pelagic marine species covering more than 17 orders of magnitude in body mass including Cephalopoda, Cnidaria, Crustaceans, Ctenophora, Elasmobranchii, Mammalia, Sagittoidea, and Teleost. We find marine life following one of two distinct strategies, with offspring size being either proportional to adult size (e.g., Crustaceans, Elasmobranchii, and Mammalia) or invariant with adult size (e.g., Cephalopoda, Cnidaria, Sagittoidea, Teleosts, and possibly Ctenophora). We discuss where these two strategies occur and how these patterns (along with the relative size of the offspring) may be shaped by physical and biological constraints in the organism's environment. This adaptive environment along with the evolutionary history of the different groups shape observed life history strategies and possible group-specific responses to changing environmental conditions (e.g., production and distribution).


Assuntos
Envelhecimento , Peixes/crescimento & desenvolvimento , Invertebrados/crescimento & desenvolvimento , Mamíferos/crescimento & desenvolvimento , Oceanos e Mares , Animais , Evolução Biológica , Peixes/fisiologia , Invertebrados/fisiologia , Mamíferos/fisiologia
8.
J Fish Biol ; 79(1): 290-7, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21722125

RESUMO

Young-of-the-year pike Esox lucius foraging on copepods experienced different foraging success depending on prey pigmentation in water visually degraded by brown colouration or algae. Both attack rate and prey consumption rate were higher for E. lucius foraging on transparent prey in brown water, whereas the opposite was true in algal turbid water. Pigments in copepod prey may have a cryptic function in brown water instead of a photo-protective function even if prey-size selectivity was stronger than selection based on pigmentation in juvenile E. lucius.


Assuntos
Comportamento Apetitivo , Copépodes/fisiologia , Esocidae/fisiologia , Pigmentação , Comportamento Predatório , Visão Ocular/fisiologia , Animais , Cadeia Alimentar , Água Doce/análise , Nefelometria e Turbidimetria
9.
Sci Rep ; 9(1): 10045, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31296876

RESUMO

Vitamin B1 is an essential exogenous micronutrient for animals. Mass death and reproductive failure in top aquatic consumers caused by vitamin B1 deficiency is an emerging conservation issue in Northern hemisphere aquatic ecosystems. We present for the first time a model that identifies conditions responsible for the constrained flow of vitamin B1 from unicellular organisms to planktivorous fishes. The flow of vitamin B1 through the food web is constrained under anthropogenic pressures of increased nutrient input and, driven by climatic change, increased light attenuation by dissolved substances transported to marine coastal systems. Fishing pressure on piscivorous fish, through increased abundance of planktivorous fish that overexploit mesozooplankton, may further constrain vitamin B1 flow from producers to consumers. We also found that key ecological contributors to the constrained flow of vitamin B1 are a low mesozooplankton biomass, picoalgae prevailing among primary producers and low fluctuations of population numbers of planktonic organisms.


Assuntos
Organismos Aquáticos , Cadeia Alimentar , Hidrobiologia , Modelos Biológicos , Tiamina/metabolismo , Animais , Biomassa , Mudança Climática , Peixes , Plâncton , Deficiência de Vitaminas do Complexo B
10.
Ann Rev Mar Sci ; 8: 217-41, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26163011

RESUMO

The size of an individual organism is a key trait to characterize its physiology and feeding ecology. Size-based scaling laws may have a limited size range of validity or undergo a transition from one scaling exponent to another at some characteristic size. We collate and review data on size-based scaling laws for resource acquisition, mobility, sensory range, and progeny size for all pelagic marine life, from bacteria to whales. Further, we review and develop simple theoretical arguments for observed scaling laws and the characteristic sizes of a change or breakdown of power laws. We divide life in the ocean into seven major realms based on trophic strategy, physiology, and life history strategy. Such a categorization represents a move away from a taxonomically oriented description toward a trait-based description of life in the oceans. Finally, we discuss life forms that transgress the simple size-based rules and identify unanswered questions.


Assuntos
Bactérias/crescimento & desenvolvimento , Biologia Marinha , Baleias/crescimento & desenvolvimento , Animais , Ecossistema , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA