Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Cell ; 174(5): 1127-1142.e19, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30078706

RESUMO

Replication origins, fragile sites, and rDNA have been implicated as sources of chromosomal instability. However, the defining genomic features of replication origins and fragile sites are among the least understood elements of eukaryote genomes. Here, we map sites of replication initiation and breakage in primary cells at high resolution. We find that replication initiates between transcribed genes within nucleosome-depleted structures established by long asymmetrical poly(dA:dT) tracts flanking the initiation site. Paradoxically, long (>20 bp) (dA:dT) tracts are also preferential sites of polar replication fork stalling and collapse within early-replicating fragile sites (ERFSs) and late-replicating common fragile sites (CFSs) and at the rDNA replication fork barrier. Poly(dA:dT) sequences are fragile because long single-strand poly(dA) stretches at the replication fork are unprotected by the replication protein A (RPA). We propose that the evolutionary expansion of poly(dA:dT) tracts in eukaryotic genomes promotes replication initiation, but at the cost of chromosome fragility.


Assuntos
Replicação do DNA , DNA Ribossômico/química , Nucleossomos/metabolismo , Poli dA-dT/química , Origem de Replicação , Motivos de Aminoácidos , Animais , Linhagem Celular , Imunoprecipitação da Cromatina , Instabilidade Cromossômica , Sítios Frágeis do Cromossomo , Fragilidade Cromossômica , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Saccharomyces cerevisiae , Schizosaccharomyces , Sítio de Iniciação de Transcrição , Transcrição Gênica
2.
PLoS Comput Biol ; 19(5): e1011138, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37253070

RESUMO

In human and other metazoans, the determinants of replication origin location and strength are still elusive. Origins are licensed in G1 phase and fired in S phase of the cell cycle, respectively. It is debated which of these two temporally separate steps determines origin efficiency. Experiments can independently profile mean replication timing (MRT) and replication fork directionality (RFD) genome-wide. Such profiles contain information on multiple origins' properties and on fork speed. Due to possible origin inactivation by passive replication, however, observed and intrinsic origin efficiencies can markedly differ. Thus, there is a need for methods to infer intrinsic from observed origin efficiency, which is context-dependent. Here, we show that MRT and RFD data are highly consistent with each other but contain information at different spatial scales. Using neural networks, we infer an origin licensing landscape that, when inserted in an appropriate simulation framework, jointly predicts MRT and RFD data with unprecedented precision and underlies the importance of dispersive origin firing. We furthermore uncover an analytical formula that predicts intrinsic from observed origin efficiency combined with MRT data. Comparison of inferred intrinsic origin efficiencies with experimental profiles of licensed origins (ORC, MCM) and actual initiation events (Bubble-seq, SNS-seq, OK-seq, ORM) show that intrinsic origin efficiency is not solely determined by licensing efficiency. Thus, human replication origin efficiency is set at both the origin licensing and firing steps.


Assuntos
Replicação do DNA , Origem de Replicação , Humanos , Replicação do DNA/genética , Origem de Replicação/genética , Cromossomos , Redes Neurais de Computação , Replicação Viral
3.
Nucleic Acids Res ; 49(12): e69, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-33836085

RESUMO

The replication strategy of metazoan genomes is still unclear, mainly because definitive maps of replication origins are missing. High-throughput methods are based on population average and thus may exclusively identify efficient initiation sites, whereas inefficient origins go undetected. Single-molecule analyses of specific loci can detect both common and rare initiation events along the targeted regions. However, these usually concentrate on positioning individual events, which only gives an overview of the replication dynamics. Here, we computed the replication fork directionality (RFD) profiles of two large genes in different transcriptional states in chicken DT40 cells, namely untranscribed and transcribed DMD and CCSER1 expressed at WT levels or overexpressed, by aggregating hundreds of oriented replication tracks detected on individual DNA fibres stretched by molecular combing. These profiles reconstituted RFD domains composed of zones of initiation flanking a zone of termination originally observed in mammalian genomes and were highly consistent with independent population-averaging profiles generated by Okazaki fragment sequencing. Importantly, we demonstrate that inefficient origins do not appear as detectable RFD shifts, explaining why dispersed initiation has remained invisible to population-based assays. Our method can both generate quantitative profiles and identify discrete events, thereby constituting a comprehensive approach to study metazoan genome replication.


Assuntos
Replicação do DNA , Genômica/métodos , Animais , Linhagem Celular , Galinhas , DNA , Análise de Sequência de DNA , Transcrição Gênica
4.
Nucleic Acids Res ; 46(19): 10157-10172, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30189101

RESUMO

The spatiotemporal program of metazoan DNA replication is regulated during development and altered in cancers. We have generated novel OK-seq, Repli-seq and RNA-seq data to compare the DNA replication and gene expression programs of twelve cancer and non-cancer human cell types. Changes in replication fork directionality (RFD) determined by OK-seq are widespread but more frequent within GC-poor isochores and largely disconnected from transcription changes. Cancer cell RFD profiles cluster with non-cancer cells of similar developmental origin but not with different cancer types. Importantly, recurrent RFD changes are detected in specific tumour progression pathways. Using a model for establishment and early progression of chronic myeloid leukemia (CML), we identify 1027 replication initiation zones (IZs) that progressively change efficiency during long-term expression of the BCR-ABL1 oncogene, being twice more often downregulated than upregulated. Prolonged expression of BCR-ABL1 results in targeting of new IZs and accentuation of previous efficiency changes. Targeted IZs are predominantly located in GC-poor, late replicating gene deserts and frequently silenced in late CML. Prolonged expression of BCR-ABL1 results in massive deletion of GC-poor, late replicating DNA sequences enriched in origin silencing events. We conclude that BCR-ABL1 expression progressively affects replication and stability of GC-poor, late-replicating regions during CML progression.


Assuntos
Replicação do DNA/genética , Sequência Rica em GC/genética , Perfilação da Expressão Gênica , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Origem de Replicação/genética , Linhagem Celular , Linhagem Celular Tumoral , Proteínas de Fusão bcr-abl/genética , Instabilidade Genômica , Células HeLa , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia
5.
Nucleic Acids Res ; 41(15): 7313-31, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23757188

RESUMO

Sperm chromatin incubated in Xenopus egg extracts undergoes origin licensing and nuclear assembly before DNA replication. We found that depletion of DNA topoisomerase IIα (topo IIα), the sole topo II isozyme of eggs and its inhibition by ICRF-193, which clamps topo IIα around DNA have opposite effects on these processes. ICRF-193 slowed down replication origin cluster activation and fork progression in a checkpoint-independent manner, without altering replicon size. In contrast, topo IIα depletion accelerated origin cluster activation, and topo IIα add-back negated overinitiation. Therefore, topo IIα is not required for DNA replication, but topo IIα clamps slow replication, probably by forming roadblocks. ICRF-193 had no effect on DNA synthesis when added after nuclear assembly, confirming that topo IIα activity is dispensable for replication and revealing that topo IIα clamps formed on replicating DNA do not block replication, presumably because topo IIα acts behind and not in front of forks. Topo IIα depletion increased, and topo IIα addition reduced, chromatin loading of MCM2-7 replicative helicase, whereas ICRF-193 did not affect MCM2-7 loading. Therefore, topo IIα restrains MCM2-7 loading in an ICRF-193-resistant manner during origin licensing, suggesting a model for establishing the sequential firing of origin clusters.


Assuntos
Replicação do DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/antagonistas & inibidores , Óvulo/enzimologia , Origem de Replicação , Xenopus/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Sequência de Bases , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Pontos de Checagem do Ciclo Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dicetopiperazinas , Masculino , Componente 2 do Complexo de Manutenção de Minicromossomo , Componente 7 do Complexo de Manutenção de Minicromossomo , Óvulo/citologia , Piperazinas/farmacologia , Replicon , Fase S , Espermatozoides/citologia , Espermatozoides/metabolismo , Fatores de Tempo , Xenopus/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
7.
Nucleic Acids Res ; 40(5): 2010-9, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22086957

RESUMO

Recent studies of eukaryotic DNA replication timing profiles suggest that the time-dependent rate of origin firing, I(t), has a universal shape, which ensures a reproducible replication completion time. However, measurements of I(t) are based on population averages, which may bias the shape of the I(t) because of imperfect cell synchrony and cell-to-cell variability. Here, we measure the population-averaged I(t) profile from synchronized Saccharomyces cerevisiae cells using DNA combing and we extract the single-cell I(t) profile using numerical deconvolution. The single cell I(t) and the population-averaged I(t) extracted from DNA combing and replication timing profiles are similar, indicating a genome scale invariance of the replication process, and excluding cell-to-cell variability in replication time as an explanation for the shape of I(t). The single cell I(t) correlates with fork density in wild-type cells, which is specifically loosened in late S phase in the clb5Δ mutant. A previously proposed numerical model that reproduces the wild-type I(t) profile, could also describe the clb5Δ mutant I(t) once modified to incorporate the decline in CDK activity and the looser dependency of initiation on fork density in the absence of Clb5p. Overall, these results suggest that the replication forks emanating from early fired origins facilitate origin firing in later-replicating regions.


Assuntos
Período de Replicação do DNA , Origem de Replicação , Saccharomyces cerevisiae/genética , Ciclina B/genética , Deleção de Genes , Análise de Sequência com Séries de Oligonucleotídeos , Fase S/genética , Proteínas de Saccharomyces cerevisiae/genética
8.
Genome Res ; 20(4): 447-57, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20103589

RESUMO

Neutral nucleotide substitutions occur at varying rates along genomes, and it remains a major issue to unravel the mechanisms that cause these variations and to analyze their evolutionary consequences. Here, we study the role of replication in the neutral substitution pattern. We obtained a high-resolution replication timing profile of the whole human genome by massively parallel sequencing of nascent BrdU-labeled replicating DNA. These data were compared to the neutral substitution rates along the human genome, obtained by aligning human and chimpanzee genomes using macaque and orangutan as outgroups. All substitution rates increase monotonously with replication timing even after controlling for local or regional nucleotide composition, crossover rate, distance to telomeres, and chromatin compaction. The increase in non-CpG substitution rates might result from several mechanisms including the increase in mutation-prone activities or the decrease in efficiency of DNA repair during the S phase. In contrast, the rate of C --> T transitions in CpG dinucleotides increases in later-replicating regions due to increasing DNA methylation level that reflects a negative correlation between timing and gene expression. Similar results are observed in the mouse, which indicates that replication timing is a main factor affecting nucleotide substitution dynamics at non-CpG sites and constitutes a major neutral process driving mammalian genome evolution.


Assuntos
Ilhas de CpG/genética , Período de Replicação do DNA/fisiologia , Genoma , Mutação de Sentido Incorreto , Animais , Replicação do DNA/genética , Replicação do DNA/fisiologia , Drosophila , Evolução Molecular , Genoma/genética , Genoma Humano , Células HeLa , Humanos , Macaca/genética , Mamíferos/genética , Camundongos , Mutação de Sentido Incorreto/fisiologia , Pan troglodytes/genética , Pongo pygmaeus/genética , Ratos
9.
PLoS Comput Biol ; 8(4): e1002443, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22496629

RESUMO

In higher eukaryotes, replication program specification in different cell types remains to be fully understood. We show for seven human cell lines that about half of the genome is divided in domains that display a characteristic U-shaped replication timing profile with early initiation zones at borders and late replication at centers. Significant overlap is observed between U-domains of different cell lines and also with germline replication domains exhibiting a N-shaped nucleotide compositional skew. From the demonstration that the average fork polarity is directly reflected by both the compositional skew and the derivative of the replication timing profile, we argue that the fact that this derivative displays a N-shape in U-domains sustains the existence of large-scale gradients of replication fork polarity in somatic and germline cells. Analysis of chromatin interaction (Hi-C) and chromatin marker data reveals that U-domains correspond to high-order chromatin structural units. We discuss possible models for replication origin activation within U/N-domains. The compartmentalization of the genome into replication U/N-domains provides new insights on the organization of the replication program in the human genome.


Assuntos
Mapeamento Cromossômico/métodos , Replicação do DNA/genética , DNA/genética , Genoma Humano/genética , Genoma/genética , Modelos Genéticos , Origem de Replicação/genética , Sequência de Bases , Linhagem Celular , Simulação por Computador , Humanos , Dados de Sequência Molecular
10.
Nat Protoc ; 18(4): 1260-1295, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36653528

RESUMO

Studying the dynamics of genome replication in mammalian cells has been historically challenging. To reveal the location of replication initiation and termination in the human genome, we developed Okazaki fragment sequencing (OK-seq), a quantitative approach based on the isolation and strand-specific sequencing of Okazaki fragments, the lagging strand replication intermediates. OK-seq quantitates the proportion of leftward- and rightward-oriented forks at every genomic locus and reveals the location and efficiency of replication initiation and termination events. Here we provide the detailed experimental procedures for performing OK-seq in unperturbed cultured human cells and budding yeast and the bioinformatics pipelines for data processing and computation of replication fork directionality. Furthermore, we present the analytical approach based on a hidden Markov model, which allows automated detection of ascending, descending and flat replication fork directionality segments revealing the zones of replication initiation, termination and unidirectional fork movement across the entire genome. These tools are essential for the accurate interpretation of human and yeast replication programs. The experiments and the data processing can be accomplished within six days. Besides revealing the genome replication program in fine detail, OK-seq has been instrumental in numerous studies unravelling mechanisms of genome stability, epigenome maintenance and genome evolution.


Assuntos
Replicação do DNA , DNA , Humanos , DNA/genética , Genômica , Biologia Computacional , Saccharomyces cerevisiae/genética
11.
Mol Biol Evol ; 28(8): 2327-37, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21368316

RESUMO

During evolution, mutations occur at rates that can differ between the two DNA strands. In the human genome, nucleotide substitutions occur at different rates on the transcribed and non-transcribed strands that may result from transcription-coupled repair. These mutational asymmetries generate transcription-associated compositional skews. To date, the existence of such asymmetries associated with replication has not yet been established. Here, we compute the nucleotide substitution matrices around replication initiation zones identified as sharp peaks in replication timing profiles and associated with abrupt jumps in the compositional skew profile. We show that the substitution matrices computed in these regions fully explain the jumps in the compositional skew profile when crossing initiation zones. In intergenic regions, we observe mutational asymmetries measured as differences between complementary substitution rates; their sign changes when crossing initiation zones. These mutational asymmetries are unlikely to result from cryptic transcription but can be explained by a model based on replication errors and strand-biased repair. In transcribed regions, mutational asymmetries associated with replication superimpose on the previously described mutational asymmetries associated with transcription. We separate the substitution asymmetries associated with both mechanisms, which allows us to determine for the first time in eukaryotes, the mutational asymmetries associated with replication and to reevaluate those associated with transcription. Replication-associated mutational asymmetry may result from unequal rates of complementary base misincorporation by the DNA polymerases coupled with DNA mismatch repair (MMR) acting with different efficiencies on the leading and lagging strands. Replication, acting in germ line cells during long evolutionary times, contributed equally with transcription to produce the present abrupt jumps in the compositional skew. These results demonstrate that DNA replication is one of the major processes that shape human genome composition.


Assuntos
Replicação do DNA/genética , Genoma Humano/genética , Mutação/genética , Composição de Bases , Linhagem Celular , Evolução Molecular , Células Germinativas/metabolismo , Células HeLa , Humanos , Células K562 , Modelos Genéticos , Especificidade de Órgãos/genética
12.
Hum Mol Genet ; 19(9): 1690-701, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20123862

RESUMO

DNA polymerase eta (poleta) performs translesion synthesis past ultraviolet (UV) photoproducts and is deficient in cancer-prone xeroderma pigmentosum variant (XP-V) syndrome. The slight sensitivity of XP-V cells to UV is dramatically enhanced by low concentrations of caffeine. So far, the biological explanation for this feature remains elusive. Using DNA combing, we showed that translesion synthesis defect leads to a strong reduction in the number of active replication forks and a high proportion of stalled forks in human cells, which contrasts with budding yeast. Moreover, extensive regions of single-strand DNA are formed during replication in irradiated XP-V cells, leading to an over-activation of ATR/Chk1 pathway after low UVC doses. Addition of a low concentration of caffeine post-irradiation, although inefficient to restore S-phase progression, significantly decreases Chk1 activation and abrogates DNA synthesis in XP-V cells. While inhibition of Chk1 activity by UCN-01 prevents UVC-induced S-phase delay in wild-type cells, it aggravates replication defect in XP-V cells by increasing fork stalling. Consequently, UCN-01 sensitizes XP-V cells to UVC as caffeine does. Our findings indicate that poleta acts at stalled forks to resume their progression, preventing the requirement for efficient replication checkpoint after low UVC doses. In the absence of poleta, Chk1 kinase becomes essential for replication resumption by alternative pathways, via fork stabilization.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Dano ao DNA/genética , Replicação do DNA/fisiologia , DNA/biossíntese , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Xeroderma Pigmentoso/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Western Blotting , Linhagem Celular , Quinase 1 do Ponto de Checagem , Replicação do DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Citometria de Fluxo , Humanos , RNA Interferente Pequeno/genética , Transfecção , Raios Ultravioleta/efeitos adversos
13.
PLoS Comput Biol ; 7(12): e1002322, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22219720

RESUMO

Genome-wide replication timing studies have suggested that mammalian chromosomes consist of megabase-scale domains of coordinated origin firing separated by large originless transition regions. Here, we report a quantitative genome-wide analysis of DNA replication kinetics in several human cell types that contradicts this view. DNA combing in HeLa cells sorted into four temporal compartments of S phase shows that replication origins are spaced at 40 kb intervals and fire as small clusters whose synchrony increases during S phase and that replication fork velocity (mean 0.7 kb/min, maximum 2.0 kb/min) remains constant and narrowly distributed through S phase. However, multi-scale analysis of a genome-wide replication timing profile shows a broad distribution of replication timing gradients with practically no regions larger than 100 kb replicating at less than 2 kb/min. Therefore, HeLa cells lack large regions of unidirectional fork progression. Temporal transition regions are replicated by sequential activation of origins at a rate that increases during S phase and replication timing gradients are set by the delay and the spacing between successive origin firings rather than by the velocity of single forks. Activation of internal origins in a specific temporal transition region is directly demonstrated by DNA combing of the IGH locus in HeLa cells. Analysis of published origin maps in HeLa cells and published replication timing and DNA combing data in several other cell types corroborate these findings, with the interesting exception of embryonic stem cells where regions of unidirectional fork progression seem more abundant. These results can be explained if origins fire independently of each other but under the control of long-range chromatin structure, or if replication forks progressing from early origins stimulate initiation in nearby unreplicated DNA. These findings shed a new light on the replication timing program of mammalian genomes and provide a general model for their replication kinetics.


Assuntos
Genoma Humano , Origem de Replicação , Separação Celular , Biologia Computacional/métodos , Replicação do DNA , Citometria de Fluxo , Técnicas Genéticas , Células HeLa , Humanos , Cinética , Modelos Genéticos , Modelos Estatísticos , Saccharomyces cerevisiae/genética , Análise de Sequência de DNA , Fatores de Tempo
14.
Methods Mol Biol ; 2477: 107-128, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35524115

RESUMO

Most genome replication mapping methods profile cell populations, masking cell-to-cell heterogeneity. Here, we describe FORK-seq, a nanopore sequencing method to map replication of single DNA molecules at 200 nucleotide resolution using a nanopore current interpretation tool allowing the quantification of BrdU incorporation. Along pulse-chased replication intermediates from Saccharomyces cerevisiae, we can orient replication tracks and reproduce population-based replication directionality profiles. Additionally, we can map individual initiation and termination events. Thus, FORK-seq reveals the full extent of cell-to-cell heterogeneity in DNA replication.


Assuntos
Sequenciamento por Nanoporos , Nanoporos , DNA/genética , Replicação do DNA , Origem de Replicação , Saccharomyces cerevisiae/genética
15.
Cell Rep ; 38(12): 110555, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35320711

RESUMO

Mutational signatures defined by single base substitution (SBS) patterns in cancer have elucidated potential mutagenic processes that contribute to malignancy. Two prevalent mutational patterns in human cancers are attributed to the APOBEC3 cytidine deaminase enzymes. Among the seven human APOBEC3 proteins, APOBEC3A is a potent deaminase and proposed driver of cancer mutagenesis. In this study, we prospectively examine genome-wide aberrations by expressing human APOBEC3A in avian DT40 cells. From whole-genome sequencing, we detect hundreds to thousands of base substitutions per genome. The APOBEC3A signature includes widespread cytidine mutations and a unique insertion-deletion (indel) signature consisting largely of cytidine deletions. This multi-dimensional APOBEC3A signature is prevalent in human cancer genomes. Our data further reveal replication-associated mutations, the rate of stem-loop and clustered mutations, and deamination of methylated cytidines. This comprehensive signature of APOBEC3A mutagenesis is a tool for future studies and a potential biomarker for APOBEC3 activity in cancer.


Assuntos
Neoplasias , Citidina , Citidina Desaminase , Genoma Humano , Humanos , Mutagênese , Neoplasias/genética , Proteínas
16.
Nat Commun ; 13(1): 3295, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35676270

RESUMO

Little is known about replication fork velocity variations along eukaryotic genomes, since reference techniques to determine fork speed either provide no sequence information or suffer from low throughput. Here we present NanoForkSpeed, a nanopore sequencing-based method to map and extract the velocity of individual forks detected as tracks of the thymidine analogue bromodeoxyuridine incorporated during a brief pulse-labelling of asynchronously growing cells. NanoForkSpeed retrieves previous Saccharomyces cerevisiae mean fork speed estimates (≈2 kb/min) in the BT1 strain exhibiting highly efficient bromodeoxyuridine incorporation and wild-type growth, and precisely quantifies speed changes in cells with altered replisome progression or exposed to hydroxyurea. The positioning of >125,000 fork velocities provides a genome-wide map of fork progression based on individual fork rates, showing a uniform fork speed across yeast chromosomes except for a marked slowdown at known pausing sites.


Assuntos
Replicação do DNA , Sequenciamento por Nanoporos , Bromodesoxiuridina/metabolismo , Cromossomos , Replicação do DNA/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
17.
Chromosome Res ; 18(1): 147-61, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20205354

RESUMO

Eukaryotic DNA replication is a complex process. Replication starts at thousand origins that are activated at different times in S phase and terminates when converging replication forks meet. Potential origins are much more abundant than actually fire within a given S phase. The choice of replication origins and their time of activation is never exactly the same in any two cells. Individual origins show different efficiencies and different firing time probability distributions, conferring stochasticity to the DNA replication process. High-throughput microarray and sequencing techniques are providing increasingly huge datasets on the population-averaged spatiotemporal patterns of DNA replication in several organisms. On the other hand, single-molecule replication mapping techniques such as DNA combing provide unique information about cell-to-cell variability in DNA replication patterns. Mathematical modelling is required to fully comprehend the complexity of the chromosome replication process and to correctly interpret these data. Mathematical analysis and computer simulations have been recently used to model and interpret genome-wide replication data in the yeast Saccharomyces cerevisiae and Schizosaccharomyces pombe, in Xenopus egg extracts and in mammalian cells. These works reveal how stochasticity in origin usage confers robustness and reliability to the DNA replication process.


Assuntos
Replicação do DNA , Modelos Teóricos , Animais , Genes Fúngicos , Schizosaccharomyces/genética , Processos Estocásticos , Xenopus laevis
18.
Genes (Basel) ; 12(8)2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34440398

RESUMO

During cell division, the duplication of the genome starts at multiple positions called replication origins. Origin firing requires the interaction of rate-limiting factors with potential origins during the S(ynthesis)-phase of the cell cycle. Origins fire as synchronous clusters which is proposed to be regulated by the intra-S checkpoint. By modelling the unchallenged, the checkpoint-inhibited and the checkpoint protein Chk1 over-expressed replication pattern of single DNA molecules from Xenopus sperm chromatin replicated in egg extracts, we demonstrate that the quantitative modelling of data requires: (1) a segmentation of the genome into regions of low and high probability of origin firing; (2) that regions with high probability of origin firing escape intra-S checkpoint regulation and (3) the variability of the rate of DNA synthesis close to replication forks is a necessary ingredient that should be taken in to account in order to describe the dynamic of replication origin firing. This model implies that the observed origin clustering emerges from the apparent synchrony of origin firing in regions with high probability of origin firing and challenge the assumption that the intra-S checkpoint is the main regulator of origin clustering.


Assuntos
Replicação do DNA , Óvulo/metabolismo , Origem de Replicação , Pontos de Checagem da Fase S do Ciclo Celular , Animais , Cromatina/metabolismo , DNA/metabolismo , Masculino , Método de Monte Carlo , Espermatozoides/metabolismo , Xenopus
19.
Elife ; 102021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33683199

RESUMO

Eukaryotic DNA replication initiates during S phase from origins that have been licensed in the preceding G1 phase. Here, we compare ChIP-seq profiles of the licensing factors Orc2, Orc3, Mcm3, and Mcm7 with gene expression, replication timing, and fork directionality profiles obtained by RNA-seq, Repli-seq, and OK-seq. Both, the origin recognition complex (ORC) and the minichromosome maintenance complex (MCM) are significantly and homogeneously depleted from transcribed genes, enriched at gene promoters, and more abundant in early- than in late-replicating domains. Surprisingly, after controlling these variables, no difference in ORC/MCM density is detected between initiation zones, termination zones, unidirectionally replicating regions, and randomly replicating regions. Therefore, ORC/MCM density correlates with replication timing but does not solely regulate the probability of replication initiation. Interestingly, H4K20me3, a histone modification proposed to facilitate late origin licensing, was enriched in late-replicating initiation zones and gene deserts of stochastic replication fork direction. We discuss potential mechanisms specifying when and where replication initiates in human cells.


Assuntos
Replicação do DNA/genética , Proteínas de Manutenção de Minicromossomo/genética , Modelos Genéticos , Complexo de Reconhecimento de Origem/genética , Linhagem Celular Tumoral , Humanos , Proteínas de Manutenção de Minicromossomo/metabolismo , Complexo de Reconhecimento de Origem/metabolismo
20.
Nucleic Acids Res ; 36(17): 5623-34, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18765475

RESUMO

Replication origins in Xenopus egg extracts are located at apparently random sequences but are activated in clusters that fire at different times during S phase under the control of ATR/ATM kinases. We investigated whether chromosomal domains and single sequences replicate at distinct times during S phase in egg extracts. Replication foci were found to progressively appear during early S phase and foci labelled early in one S phase colocalized with those labelled early in the next S phase. However, the distribution of these two early labels did not coincide between single origins or origin clusters on single DNA fibres. The 4 Mb Xenopus rDNA repeat domain was found to replicate later than the rest of the genome and to have a more nuclease-resistant chromatin structure. Replication initiated more frequently in the transcription unit than in the intergenic spacer. These results suggest for the first time that in this embryonic system, where transcription does not occur, replication timing is deterministic at the scale of large chromatin domains (1-5 Mb) but stochastic at the scale of replicons (10 kb) and replicon clusters (50-100 kb).


Assuntos
Cromossomos/química , Replicação do DNA , Origem de Replicação , Replicon , Fase S/genética , Animais , Extratos Celulares , Núcleo Celular/metabolismo , Cromossomos/metabolismo , DNA Ribossômico/biossíntese , DNA Ribossômico/química , Cinética , Masculino , Óvulo/metabolismo , Espermatozoides/metabolismo , Processos Estocásticos , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA