Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
1.
Physiol Rev ; 99(4): 1655-1699, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31313981

RESUMO

Integrins are heterodimeric cell surface receptors ensuring the mechanical connection between cells and the extracellular matrix. In addition to the anchorage of cells to the extracellular matrix, these receptors have critical functions in intracellular signaling, but are also taking center stage in many physiological and pathological conditions. In this review, we provide some historical, structural, and physiological notes so that the diverse functions of these receptors can be appreciated and put into the context of the emerging field of mechanobiology. We propose that the exciting journey of the exploration of these receptors will continue for at least another new generation of researchers.


Assuntos
Adesão Celular , Membrana Celular/metabolismo , Matriz Extracelular/metabolismo , Integrinas/metabolismo , Mecanotransdução Celular , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proliferação de Células , Humanos , Integrinas/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Modelos Moleculares , Fosfoproteínas/metabolismo , Conformação Proteica , Relação Estrutura-Atividade , Transativadores , Fatores de Transcrição , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteínas de Sinalização YAP
2.
Hum Mol Genet ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39163585

RESUMO

Variants of talin-1 (TLN1) have recently been linked with spontaneous coronary artery dissection (SCAD) a condition where a tear can form in the wall of a heart artery necessitating immediate medical care. One talin-1 variant, A2013T, has an extensive familial pedigree of SCAD, which led to the screening for, and identification of, further talin-1 variants in SCAD patients. Here we evaluated these variants with commonly used pathogenicity prediction tools and found it challenging to reliably classify SCAD-associated variants, even A2013T where the evidence of a causal role is strong. Using biochemical and cell biological methods, we show that SCAD-associated variants in talin-1, which would typically be classified as non-pathogenic, still cause a measurable impact on protein structure and cell behaviour, including cell movement and wound healing capacity. Together, this indicates that even subtle variants in central mechanosensitive adapter proteins, can give rise to significant health impacts at the individual level, suggesting the need for a possible re-evaluation of the scoring criteria for pathogenicity prediction for talin variants.

3.
PLoS Pathog ; 20(4): e1011829, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38620036

RESUMO

Viruses target mitochondria to promote their replication, and infection-induced stress during the progression of infection leads to the regulation of antiviral defenses and mitochondrial metabolism which are opposed by counteracting viral factors. The precise structural and functional changes that underlie how mitochondria react to the infection remain largely unclear. Here we show extensive transcriptional remodeling of protein-encoding host genes involved in the respiratory chain, apoptosis, and structural organization of mitochondria as herpes simplex virus type 1 lytic infection proceeds from early to late stages of infection. High-resolution microscopy and interaction analyses unveiled infection-induced emergence of rough, thin, and elongated mitochondria relocalized to the perinuclear area, a significant increase in the number and clustering of endoplasmic reticulum-mitochondria contact sites, and thickening and shortening of mitochondrial cristae. Finally, metabolic analyses demonstrated that reactivation of ATP production is accompanied by increased mitochondrial Ca2+ content and proton leakage as the infection proceeds. Overall, the significant structural and functional changes in the mitochondria triggered by the viral invasion are tightly connected to the progression of the virus infection.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Mitocôndrias , Mitocôndrias/metabolismo , Herpesvirus Humano 1/fisiologia , Herpesvirus Humano 1/metabolismo , Humanos , Herpes Simples/metabolismo , Herpes Simples/virologia , Herpes Simples/patologia , Animais , Infecções por Herpesviridae/metabolismo , Infecções por Herpesviridae/virologia , Infecções por Herpesviridae/patologia , Progressão da Doença , Chlorocebus aethiops
4.
J Cell Sci ; 136(8)2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37078342

RESUMO

Talin (herein referring to the talin-1 form), is a cytoskeletal adapter protein that binds integrin receptors and F-actin, and is a key factor in the formation and regulation of integrin-dependent cell-matrix adhesions. Talin forms the mechanical link between the cytoplasmic domain of integrins and the actin cytoskeleton. Through this linkage, talin is at the origin of mechanosignaling occurring at the plasma membrane-cytoskeleton interface. Despite its central position, talin is not able to fulfill its tasks alone, but requires help from kindlin and paxillin to detect and transform the mechanical tension along the integrin-talin-F-actin axis into intracellular signaling. The talin head forms a classical FERM domain, which is required to bind and regulate the conformation of the integrin receptor, as well as to induce intracellular force sensing. The FERM domain allows the strategic positioning of protein-protein and protein-lipid interfaces, including the membrane-binding and integrin affinity-regulating F1 loop, as well as the interaction with lipid-anchored Rap1 (Rap1a and Rap1b in mammals) GTPase. Here, we summarize the structural and regulatory features of talin and explain how it regulates cell adhesion and force transmission, as well as intracellular signaling at integrin-containing cell-matrix attachment sites.


Assuntos
Actinas , Talina , Animais , Talina/metabolismo , Integrinas/metabolismo , Adesão Celular/fisiologia , Proteínas do Citoesqueleto/metabolismo , Lipídeos , Mamíferos/metabolismo
5.
PLoS Comput Biol ; 20(8): e1012341, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39110765

RESUMO

Vinculin binds to specific sites of mechanically unfolded talin rod domains to reinforce the coupling of the cell's exterior to its force generation machinery. Force-dependent vinculin-talin complexation and dissociation was previously observed as contraction or extension of the unfolded talin domains respectively using magnetic tweezers. However, the structural mechanism underlying vinculin recognition of unfolded vinculin binding sites (VBSs) in talin remains unknown. Using molecular dynamics simulations, we demonstrate that a VBS dynamically refolds under force, and that vinculin can recognize and bind to partially unfolded VBS states. Vinculin binding enables refolding of the mechanically strained VBS and stabilizes its folded α-helical conformation, providing resistance against mechanical stress. Together, these results provide an understanding of a recognition mechanism of proteins unfolded by force and insight into the initial moments of how vinculin binds unfolded talin rod domains during the assembly of this mechanosensing meshwork.


Assuntos
Simulação de Dinâmica Molecular , Ligação Proteica , Talina , Vinculina , Vinculina/metabolismo , Vinculina/química , Talina/metabolismo , Talina/química , Sítios de Ligação , Desdobramento de Proteína , Dobramento de Proteína , Estresse Mecânico , Humanos
6.
Hum Mol Genet ; 31(24): 4159-4172, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-35861643

RESUMO

Adhesion of cells to the extracellular matrix (ECM) must be exquisitely coordinated to enable development and tissue homeostasis. Cell-ECM interactions are regulated by multiple signalling pathways that coordinate the activation state of the integrin family of ECM receptors. The protein talin is pivotal in this process, and talin's simultaneous interactions with the cytoplasmic tails of the integrins and the plasma membrane are essential to enable robust, dynamic control of integrin activation and cell-ECM adhesion. Here, we report the identification of a de novo heterozygous c.685C>T (p.Pro229Ser) variant in the TLN1 gene from a patient with a complex phenotype. The mutation is located in the talin head region at the interface between the F2 and F3 domains. The characterization of this novel p.P229S talin variant reveals the disruption of adhesion dynamics that result from disturbance of the F2-F3 domain interface in the talin head. Using biophysical, computational and cell biological techniques, we find that the variant perturbs the synergy between the integrin-binding F3 and the membrane-binding F2 domains, compromising integrin activation, adhesion and cell migration. Whilst this remains a variant of uncertain significance, it is probable that the dysregulation of adhesion dynamics we observe in cells contributes to the multifaceted clinical symptoms of the patient and may provide insight into the multitude of cellular processes dependent on talin-mediated adhesion dynamics.


Assuntos
Integrinas , Talina , Talina/genética , Talina/química , Talina/metabolismo , Integrinas/genética , Integrinas/metabolismo , Ligação Proteica , Membrana Celular/metabolismo , Adesão Celular/genética
7.
J Cell Sci ; 135(22)2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36398718

RESUMO

The role of mechanical signals in the proper functioning of organisms is increasingly recognised, and every cell senses physical forces and responds to them. These forces are generated both from outside the cell or via the sophisticated force-generation machinery of the cell, the cytoskeleton. All regions of the cell are connected via mechanical linkages, enabling the whole cell to function as a mechanical system. In this Review, we define some of the key concepts of how this machinery functions, highlighting the critical requirement for mechanosensory proteins, and conceptualise the coupling of mechanical linkages to mechanochemical switches that enables forces to be converted into biological signals. These mechanical couplings provide a mechanism for how mechanical crosstalk might coordinate the entire cell, its neighbours, extending into whole collections of cells, in tissues and in organs, and ultimately in the coordination and operation of entire organisms. Consequently, many diseases manifest through defects in this machinery, which we map onto schematics of the mechanical linkages within a cell. This mapping approach paves the way for the identification of additional linkages between mechanosignalling pathways and so might identify treatments for diseases, where mechanical connections are affected by mutations or where individual force-regulated components are defective.


Assuntos
Citoesqueleto , Mapas de Interação de Proteínas , Fenômenos Biomecânicos , Citoesqueleto/metabolismo
8.
J Am Chem Soc ; 145(45): 24459-24465, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-38104267

RESUMO

Light is well-established for control of bond breakage but not for control of specific bond formation in complex environments. We previously engineered the diffusion-limited reactivity of the SpyTag003 peptide with its protein partner SpyCatcher003 through spontaneous isopeptide bond formation. This system enables precise and irreversible assembly of biological building blocks with applications from biomaterials to vaccines. Here we establish a system for the rapid control of this amide bond formation with visible light. We have generated a caged SpyCatcher003, which allows light triggering of covalent bond formation to SpyTag003 in mammalian cells. Photocaging is achieved through site-specific incorporation of an unnatural coumarin-lysine at the reactive site of SpyCatcher003. We showed a uniform specific reaction in cell lysate upon light activation. We then used the spatiotemporal precision of a 405 nm confocal laser for uncaging in seconds, probing the earliest events in mechanotransduction by talin, the key force sensor between the cytoskeleton and the extracellular matrix. Reconstituting talin induced rapid biphasic extension of lamellipodia, revealing the kinetics of talin-regulated cell spreading and polarization. Thereafter we determined the hierarchy of the recruitment of key components for cell adhesion. Precise control over site-specific protein reaction with visible light creates diverse opportunities for cell biology and nanoassembly.


Assuntos
Mecanotransdução Celular , Talina , Animais , Adesão Celular , Talina/metabolismo , Mecanotransdução Celular/fisiologia , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Mamíferos/metabolismo
9.
Small ; 19(14): e2206713, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36631276

RESUMO

Several techniques have been established to quantify the mechanicals of single molecules. However, most of them show only limited capabilities of parallelizing the measurement by performing many individual measurements simultaneously. Herein, a microfluidics-based single-molecule force spectroscopy method, which achieves sub-nanometer spatial resolution and sub-piconewton sensitivity and is capable of simultaneously quantifying hundreds of single-molecule targets in parallel, is presented. It relies on a combination of total internal reflection microscopy and microfluidics, in which monodisperse fluorescent beads are immobilized on the bottom of a microfluidic channel by macromolecular linkers. Application of a flow generates a well-defined shear force acting on the beads, whereas the nanomechanical linker response is quantified based on the force-induced displacement of individual beads. To handle the high amount of data generated, a cluster analysis which is capable of a semi-automatic identification of measurement artifacts and molecular populations is implemented. The method is validated by probing the mechanical response polyethylene glycol linkers and binding strength of biotin-NeutrAvidin complexes. Two energy barriers (at 3 and 5.7 Å, respectively) in the biotin-NeutrAvidin interaction are resolved and the unfolding behavior of talin's rod domain R3 in the force range between 1 to ≈10 pN is probed.

10.
Proc Natl Acad Sci U S A ; 117(51): 32402-32412, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33288722

RESUMO

Binding of the intracellular adapter proteins talin and its cofactor, kindlin, to the integrin receptors induces integrin activation and clustering. These processes are essential for cell adhesion, migration, and organ development. Although the talin head, the integrin-binding segment in talin, possesses a typical FERM-domain sequence, a truncated form has been crystallized in an unexpected, elongated form. This form, however, lacks a C-terminal fragment and possesses reduced ß3-integrin binding. Here, we present a crystal structure of a full-length talin head in complex with the ß3-integrin tail. The structure reveals a compact FERM-like conformation and a tightly associated N-P-L-Y motif of ß3-integrin. A critical C-terminal poly-lysine motif mediates FERM interdomain contacts and assures the tight association with the ß3-integrin cytoplasmic segment. Removal of the poly-lysine motif or disrupting the FERM-folded configuration of the talin head significantly impairs integrin activation and clustering. Therefore, structural characterization of the FERM-folded active talin head provides fundamental understanding of the regulatory mechanism of integrin function.


Assuntos
Integrina beta3/metabolismo , Talina/química , Talina/metabolismo , Motivos de Aminoácidos , Animais , Sítios de Ligação , Humanos , Integrina beta3/química , Leucina/metabolismo , Camundongos , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Mutagênese , Polilisina/química , Domínios Proteicos , Dobramento de Proteína , Talina/genética
11.
J Cell Sci ; 133(9)2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32193334

RESUMO

αVß3 integrin can bind to multiple extracellular matrix proteins, including vitronectin (Vn) and fibronectin (Fn), which are often presented to cells in culture as homogenous substrates. However, in tissues, cells experience highly complex and changing environments. To better understand integrin ligand selection in such complex environments, we employed binary-choice substrates of Fn and Vn to dissect αVß3 integrin-mediated binding to different ligands on the subcellular scale. Super-resolution imaging revealed that αVß3 integrin preferred binding to Vn under various conditions. In contrast, binding to Fn required higher mechanical load on αVß3 integrin. Integrin mutations, structural analysis and chemical inhibition experiments indicated that the degree of hybrid domain swing-out is relevant for the selection between Fn and Vn; only a force-mediated, full hybrid domain swing-out facilitated αVß3-Fn binding. Thus, force-dependent conformational changes in αVß3 integrin increased the diversity of available ligands for binding and therefore enhanced the ligand promiscuity of this integrin.This article has an associated First Person interview with the first author of the paper.


Assuntos
Fibronectinas , Integrinas , Adesão Celular , Proteínas da Matriz Extracelular , Fibronectinas/genética , Integrina alfaVbeta3/genética , Ligantes , Fenômenos Mecânicos , Vitronectina/genética
12.
J Cell Sci ; 133(19)2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33046605

RESUMO

Integrin activation and clustering by talin are early steps of cell adhesion. Membrane-bound talin head domain and kindlin bind to the ß integrin cytoplasmic tail, cooperating to activate the heterodimeric integrin, and the talin head domain induces integrin clustering in the presence of Mn2+ Here we show that kindlin-1 can replace Mn2+ to mediate ß3 integrin clustering induced by the talin head, but not that induced by the F2-F3 fragment of talin. Integrin clustering mediated by kindlin-1 and the talin head was lost upon deletion of the flexible loop within the talin head F1 subdomain. Further mutagenesis identified hydrophobic and acidic motifs in the F1 loop responsible for ß3 integrin clustering. Modeling, computational and cysteine crosslinking studies showed direct and catalytic interactions of the acidic F1 loop motif with the juxtamembrane domains of α- and ß3-integrins, in order to activate the ß3 integrin heterodimer, further detailing the mechanism by which the talin-kindlin complex activates and clusters integrins. Moreover, the F1 loop interaction with the ß3 integrin tail required the newly identified compact FERM fold of the talin head, which positions the F1 loop next to the inner membrane clasp of the talin-bound integrin heterodimer.This article has an associated First Person interview with the first author of the paper.


Assuntos
Integrina beta3 , Talina , Adesão Celular , Análise por Conglomerados , Integrina beta3/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Talina/genética , Talina/metabolismo
13.
Malar J ; 21(1): 189, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35706028

RESUMO

BACKGROUND: Malaria is a significant parasitic infection, and human infection is mediated by mosquito (Anopheles) biting and subsequent transmission of protozoa (Plasmodium) to the blood. Carbonic anhydrases (CAs) are known to be highly expressed in the midgut and ectoperitrophic space of Anopheles gambiae. Transmembrane CAs (tmCAs) in Plasmodium may be potential vaccine candidates for the control and prevention of malaria. METHODS: In this study, two groups of transmembrane CAs, including α-CAs and one group of η-CAs were analysed by immunoinformatics and computational biology methods, such as predictions on transmembrane localization of CAs from Plasmodium spp., affinity and stability of different HLA classes, antigenicity of tmCA peptides, epitope and proteasomal cleavage of Plasmodium tmCAs, accessibility of Plasmodium tmCAs MHC-ligands, allergenicity of Plasmodium tmCAs, disulfide-bond of Plasmodium tmCAs, B cell epitopes of Plasmodium tmCAs, and Cell type-specific expression of Plasmodium CAs. RESULTS: Two groups of α-CAs and one group of η-CAs in Plasmodium spp. were identified to contain tmCA sequences, having high affinity towards MHCs, high stability, and strong antigenicity. All putative tmCAs were predicted to contain sequences for proteasomal cleavage in antigen presenting cells (APCs). CONCLUSIONS: The predicted results revealed that tmCAs from Plasmodium spp. can be potential targets for vaccination against malaria.


Assuntos
Anopheles , Anidrases Carbônicas , Malária , Plasmodium , Vacinas , Animais , Anopheles/metabolismo , Anidrases Carbônicas/química , Anidrases Carbônicas/metabolismo , Epitopos de Linfócito B , Humanos , Malária/prevenção & controle , Plasmodium falciparum/metabolismo , Vacinologia
14.
Anal Bioanal Chem ; 414(15): 4509-4518, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35581427

RESUMO

Viruses play a major role in modern society and create risks from global pandemics and bioterrorism to challenges in agriculture. Virus infectivity assays and genome copy number determination methods are often used to obtain information on virus preparations used in diagnostics and vaccine development. However, these methods do not provide information on virus particle count. Current methods to measure the number of viral particles are often cumbersome and require highly purified virus preparations and expensive instrumentation. To tackle these problems, we developed a simple and cost-effective time-resolved luminescence-based method for virus particle quantification. This mix-and-measure technique is based on the recognition of the virus particles by an external Eu3+-peptide probe, providing results on virus count in minutes. The method enables the detection of non-enveloped and enveloped viruses, having over tenfold higher detectability for enveloped, dynamic range from 5E6 to 3E10 vp/mL, than non-enveloped viruses. Multiple non-enveloped and enveloped viruses were used to demonstrate the functionality and robustness of the Protein-Probe method.


Assuntos
Viroses , Vírus , Humanos , Luminescência , Vírion
15.
Appl Microbiol Biotechnol ; 106(11): 4065-4074, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35612631

RESUMO

We report the production and biochemical characterization of an α-carbonic anhydrase (LrhCA) from gram-positive probiotic bacteria Lactobacillus rhamnosus GG. CAs form a family of metalloenzymes that catalyze hydration of CO2/interconversion between CO2 and water to bicarbonate ions and protons. They are divided into eight independent gene families (α, ß, γ, δ, ζ, η, θ, and ι). Interestingly, many pathogens have been identified with only ß- and/or γ-CAs, which can be targeted with CA-specific inhibitors (CAIs) acting as anti-pathogen drugs. Since it is important to study the potential off-target effects of CAIs for both the human body and its commensal bacteria, we took L. rhamnosus GG as our study subject. To date, only a single α-CA has been identified in L. rhamnosus GG, which was successfully produced and biochemically characterized. LrhCA showed moderate catalytic activity with the following kinetic parameters: kcat of 9.86 × 105 s-1 and kcat/KM of 1.41 × 107 s-1 M-1. Moderate inhibition was established with 11 of the 39 studied sulfonamides. The best inhibitors were 5-((4-aminophenyl)sulfonamido)-1,3,4-thiadiazole-2-sulfonamide, 4-(2-hydroxymethyl-4-nitrophenyl-sulfonamidoethyl)-benzenesulfonamide, and benzolamide with Ki values of 319 nM, 378 nM, and 387 nM, respectively. The other compounds showed weaker inhibitory effects. The Ki of acetazolamide, a classical CAI, was 733 nM. In vitro experiments with acetazolamide showed that it had no significant effect on cell growth in L. rhamnosus GG culture. Several sulfonamides, including acetazolamide, are in use as clinical drugs, making their inhibition data highly relevant to avoid any adverse off-target effects towards the human body and its probiotic organisms. KEY POINTS: • The α-carbonic anhydrase from Lactobacillus rhamnosus GG (LrhCA) is 24.3 kDa. • LrhCA has significant catalytic activity with a kcat of 9.9 × 105 s-1. • Acetazolamide resulted in a marginal inhibitory effect on cell growth.


Assuntos
Anidrases Carbônicas , Lacticaseibacillus rhamnosus , Acetazolamida/farmacologia , Dióxido de Carbono/química , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/química , Anidrases Carbônicas/genética , Sulfonamidas/farmacologia
16.
Proc Natl Acad Sci U S A ; 116(52): 26523-26533, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31822621

RESUMO

Much of life's complexity depends upon contacts between proteins with precise affinity and specificity. The successful application of engineered proteins often depends on high-stability binding to their target. In recent years, various approaches have enabled proteins to form irreversible covalent interactions with protein targets. However, the rate of such reactions is a major limitation to their use. Infinite affinity refers to the ideal where such covalent interaction occurs at the diffusion limit. Prototypes of infinite affinity pairs have been achieved using nonnatural reactive groups. After library-based evolution and rational design, here we establish a peptide-protein pair composed of the regular 20 amino acids that link together through an amide bond at a rate approaching the diffusion limit. Reaction occurs in a few minutes with both partners at low nanomolar concentration. Stopped flow fluorimetry illuminated the conformational dynamics involved in docking and reaction. Hydrogen-deuterium exchange mass spectrometry gave insight into the conformational flexibility of this split protein and the process of enhancing its reaction rate. We applied this reactive pair for specific labeling of a plasma membrane target in 1 min on live mammalian cells. Sensitive and specific detection was also confirmed by Western blot in a range of model organisms. The peptide-protein pair allowed reconstitution of a critical mechanotransmitter in the cytosol of mammalian cells, restoring cell adhesion and migration. This simple genetic encoding for rapid irreversible reaction should provide diverse opportunities to enhance protein function by rapid detection, stable anchoring, and multiplexing of protein functionality.

17.
J Cell Sci ; 132(7)2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30837291

RESUMO

Talin protein is one of the key components in integrin-mediated adhesion complexes. Talins transmit mechanical forces between ß-integrin and actin, and regulate adhesion complex composition and signaling through the force-regulated unfolding of talin rod domain. Using modified talin proteins, we demonstrate that these functions contribute to different cellular processes and can be dissected. The transmission of mechanical forces regulates adhesion complex composition and phosphotyrosine signaling even in the absence of the mechanically regulated talin rod subdomains. However, the presence of the rod subdomains and their mechanical activation are required for the reinforcement of the adhesion complex, cell polarization and migration. Talin rod domain unfolding was also found to be essential for the generation of cellular signaling anisotropy, since both insufficient and excess activity of the rod domain severely inhibited cell polarization. Utilizing proteomics tools, we identified adhesome components that are recruited and activated either in a talin rod-dependent manner or independently of the rod subdomains. This study clarifies the division of roles between the force-regulated unfolding of a talin protein (talin 1) and its function as a physical linker between integrins and the cytoskeleton.


Assuntos
Movimento Celular , Adesões Focais/metabolismo , Desdobramento de Proteína , Transdução de Sinais , Talina/metabolismo , Actinas/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Citoesqueleto/metabolismo , Adesões Focais/genética , Integrinas/metabolismo , Camundongos , Fosfotirosina/metabolismo , Ligação Proteica , Talina/genética
18.
J Cell Sci ; 132(8)2019 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-30890648

RESUMO

Heterodimeric integrin receptors control cell adhesion, migration and extracellular matrix assembly. While the α integrin subunit determines extracellular ligand specificity, the ß integrin chain binds to an acidic residue of the ligand, and cytoplasmic adapter protein families such as talins, kindlins and paxillin, to form mechanosensing cell matrix adhesions. Alternative splicing of the ß1 integrin cytoplasmic tail creates ubiquitously expressed ß1A, and the heart and skeletal muscle-specific ß1D form. To study the physiological difference between these forms, we developed fluorescent ß1 integrins and analyzed their dynamics, localization, and cytoplasmic adapter recruitment and effects on cell proliferation. On fibronectin, GFP-tagged ß1A integrin showed dynamic exchange in peripheral focal adhesions, and long, central fibrillar adhesions. In contrast, GFP-ß1D integrins exchanged slowly, forming immobile and short central adhesions. While adhesion recruitment of GFP-ß1A integrin was sensitive to C-terminal tail mutagenesis, GFP-ß1D integrin was recruited independently of the distal NPXY motif. In addition, a P786A mutation in the proximal, talin-binding NPXY783 motif switched ß1D to a highly dynamic integrin. In contrast, the inverse A786P mutation in ß1A integrin interfered with paxillin recruitment and proliferation. Thus, differential ß1 integrin splicing controls integrin-dependent adhesion signaling, to adapt to the specific physiological needs of differentiated muscle cells.


Assuntos
Processamento Alternativo , Integrina beta1/metabolismo , Paxilina/metabolismo , Transdução de Sinais , Animais , Proliferação de Células , Citoplasma/metabolismo , Citoesqueleto/metabolismo , Fibronectinas/fisiologia , Adesões Focais/fisiologia , Camundongos , Músculo Esquelético/metabolismo , Células NIH 3T3
19.
Nat Mater ; 19(6): 669-678, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31907416

RESUMO

Extensive research over the past decades has identified integrins to be the primary transmembrane receptors that enable cells to respond to external mechanical cues. We reveal here a mechanism whereby syndecan-4 tunes cell mechanics in response to localized tension via a coordinated mechanochemical signalling response that involves activation of two other receptors: epidermal growth factor receptor and ß1 integrin. Tension on syndecan-4 induces cell-wide activation of the kindlin-2/ß1 integrin/RhoA axis in a PI3K-dependent manner. Furthermore, syndecan-4-mediated tension at the cell-extracellular matrix interface is required for yes-associated protein activation. Extracellular tension on syndecan-4 triggers a conformational change in the cytoplasmic domain, the variable region of which is indispensable for the mechanical adaptation to force, facilitating the assembly of a syndecan-4/α-actinin/F-actin molecular scaffold at the bead adhesion. This mechanotransduction pathway for syndecan-4 should have immediate implications for the broader field of mechanobiology.


Assuntos
Integrinas/metabolismo , Mecanotransdução Celular , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Sindecana-4/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Células Cultivadas , Humanos , Integrinas/genética , Proteínas de Membrana/genética , Proteínas de Neoplasias/genética , Sindecana-4/genética , Proteína rhoA de Ligação ao GTP/genética
20.
FASEB J ; 34(2): 2227-2237, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31916632

RESUMO

Cyanidin-3-glucoside (C3G) is a natural pigment, found in many colorful fruits and vegetables. It has many health benefits, including anti-inflammation, cancer prevention, and anti-diabetes. Although C3G is assumed to be an antioxidant, it has been reported to affect cell-matrix adhesions. However, the underlying molecular mechanism is unknown. Here, we show that the expression of talin1, a key regulator of integrins and cell adhesions, negatively correlated with the survival rate of colon cancer patients and that depletion of talin1 inhibited 3D spheroid growth in colon cancer cells. Interestingly, C3G bound to talin and promoted the interaction of talin with ß1A-integrin. Molecular docking analysis shows that C3G binds to the interface of the talin-ß-integrin complex, acting as an allosteric regulator and altering the interaction between talin and integrin. Moreover, C3G promoted colon cancer cell attachment to fibronectin. While C3G had no significant effect on colon cancer cell proliferation, it significantly inhibited 3D spheroid growth in fibrin gel assays. Since C3G has no or very low toxicity, it could be potentially used for colon cancer prevention or therapy.


Assuntos
Antocianinas/farmacocinética , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo , Glucosídeos/farmacocinética , Proteínas de Neoplasias , Talina , Animais , Células CHO , Técnicas de Cultura de Células , Neoplasias do Colo/química , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Cricetinae , Cricetulus , Células HCT116 , Humanos , Simulação de Dinâmica Molecular , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Talina/química , Talina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA