Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542065

RESUMO

Non-alcoholic fatty liver disease (NAFLD) has emerged as a significant liver ailment attributed to factors like obesity and diabetes. While ongoing research explores treatments for NAFLD, further investigation is imperative to address this escalating health concern. NAFLD manifests as hepatic steatosis, precipitating insulin resistance and metabolic syndrome. This study aims to validate the regenerative potential of chimeric fibroblast growth factor 21 (FGF21) and Hepatocyte Growth Factor Receptor (HGFR) in NAFLD-afflicted liver cells. AML12, a murine hepatocyte cell line, was utilized to gauge the regenerative effects of chimeric FGF21/HGFR expression. Polysaccharide accumulation was affirmed through Periodic acid-Schiff (PAS) staining, while LDL uptake was microscopically observed with labeled LDL. The expression of FGF21/HGFR and NAFLD markers was analyzed by mRNA analysis with RT-PCR, which showed a decreased expression in acetyl-CoA carboxylase 1 (ACC1) and sterol regulatory element binding protein (SREBP) cleavage-activating protein (SCAP) with increased expression of hepatocellular growth factor (HGF), hepatocellular nuclear factor 4 alpha (HNF4A), and albumin (ALB). These findings affirm the hepato-regenerative properties of chimeric FGF21/HGFR within AML12 cells, opening novel avenues for therapeutic exploration in NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Fígado/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo
2.
J Hepatol ; 75(3): 623-633, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33964370

RESUMO

BACKGROUND & AIMS: Non-alcoholic fatty liver disease (NAFLD), the hepatic correlate of the metabolic syndrome, is a major risk factor for hepatobiliary cancer (HBC). Although chronic inflammation is thought to be the root cause of all these diseases, the mechanism whereby it promotes HBC in NAFLD remains poorly understood. Herein, we aim to evaluate the hypothesis that inflammation-related dysregulation of the ESRP2-NF2-YAP/TAZ axis promotes HB carcinogenesis. METHODS: We use murine NAFLD models, liver biopsies from patients with NAFLD, human liver cancer registry data, and studies in liver cancer cell lines. RESULTS: Our results confirm the hypothesis that inflammation-related dysregulation of the ESRP2-NF2-YAP/TAZ axis promotes HB carcinogenesis, supporting a model whereby chronic inflammation suppresses hepatocyte expression of ESRP2, an RNA splicing factor that directly targets and activates NF2, a tumor suppressor that is necessary to constrain YAP/TAZ activation. The resultant loss of NF2 function permits sustained YAP/TAZ activity that drives hepatocyte proliferation and de-differentiation. CONCLUSION: Herein, we report on a novel mechanism by which chronic inflammation leads to sustained activation of YAP/TAZ activity; this imposes a selection pressure that favors liver cells with mutations enabling survival during chronic oncogenic stress. LAY SUMMARY: Non-alcoholic fatty liver disease (NAFLD) increases the risk of hepatobiliary carcinogenesis. However, the underlying mechanism remains unknown. Our study demonstrates that chronic inflammation suppresses hepatocyte expression of ESRP2, an adult RNA splicing factor that activates NF2. Thus, inactive (fetal) NF2 loses the ability to activate Hippo kinases, leading to the increased activity of downstream YAP/TAZ and promoting hepatobiliary carcinogenesis in chronically injured livers.


Assuntos
Eixo Encéfalo-Intestino/genética , Carcinogênese/metabolismo , Doenças do Sistema Digestório/etiologia , Hepatopatia Gordurosa não Alcoólica/complicações , Animais , Eixo Encéfalo-Intestino/fisiologia , Carcinogênese/patologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Am J Pathol ; 190(1): 93-107, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31669305

RESUMO

Fibrolamellar carcinoma (FLC) is characterized by in-frame fusion of DnaJ heat shock protein family (Hsp40) member B1 (DNAJB1) with protein kinase cAMP-activated catalytic subunit α (PRKACA) and by dense desmoplasia. Surgery is the only effective treatment because mechanisms supporting tumor survival are unknown. We used single-cell RNA sequencing to characterize a patient-derived FLC xenograft model and identify therapeutic targets. Human FLC cells segregated into four discrete clusters that all expressed the oncogene Yes-associated protein 1 (YAP1). The two communities most enriched with cells coexpressing FLC markers [CD68, A-kinase anchoring protein 12 (AKAP12), cytokeratin 7, epithelial cell adhesion molecule (EPCAM), and carbamoyl palmitate synthase-1] also had the most cells expressing YAP1 and its proproliferative target genes (AREG and CCND1), suggesting these were proliferative FLC cell clusters. The other two clusters were enriched with cells expressing profibrotic YAP1 target genes, ACTA2, ELN, and COL1A1, indicating these were fibrogenic FLC cells. All clusters expressed the YAP1 target gene and mesothelial progenitor marker mesothelin, and many mesothelin-positive cells coexpressed albumin. Trajectory analysis predicted that the four FLC communities were derived from a single cell type transitioning among phenotypic states. After establishing a novel FLC cell line that harbored the DNAJB1-PRKACA fusion, YAP1 was inhibited, which significantly reduced expression of known YAP1 target genes as well as cell growth and migration. Thus, both FLC epithelial and stromal cells appear to arise from DNAJB1-PRKACA fusion in a YAP1-dependent liver mesothelial progenitor, identifying YAP1 as a target for FLC therapy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma Hepatocelular/patologia , Epitélio/patologia , Neoplasias Hepáticas/patologia , Fígado/patologia , Análise de Célula Única/métodos , Células-Tronco/patologia , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Biomarcadores Tumorais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Epitélio/metabolismo , Regulação Neoplásica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Fígado/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Mesotelina , Camundongos , Camundongos SCID , Células-Tronco/metabolismo , Fatores de Transcrição/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas de Sinalização YAP
4.
Int J Mol Sci ; 22(11)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34071962

RESUMO

Alcoholic liver disease (ALD) is a globally prevalent chronic liver disease caused by chronic or binge consumption of alcohol. The liver is the major organ that metabolizes alcohol; therefore, it is particularly sensitive to alcohol intake. Metabolites and byproducts generated during alcohol metabolism cause liver damage, leading to ALD via several mechanisms, such as impairing lipid metabolism, intensifying inflammatory reactions, and inducing fibrosis. Despite the severity of ALD, the development of novel treatments has been hampered by the lack of animal models that fully mimic human ALD. To overcome the current limitations of ALD studies and therapy development, it is necessary to understand the molecular mechanisms underlying alcohol-induced liver injury. Hence, to provide insights into the progression of ALD, this review examines previous studies conducted on alcohol metabolism in the liver. There is a particular focus on the occurrence of ALD caused by hepatotoxicity originating from alcohol metabolism.


Assuntos
Etanol/metabolismo , Inativação Metabólica , Fígado/metabolismo , Animais , Suscetibilidade a Doenças , Hepatócitos/metabolismo , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Imunomodulação , Metabolismo dos Lipídeos , Fígado/imunologia , Cirrose Hepática/etiologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Hepatopatias Alcoólicas/etiologia , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/patologia , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Redes e Vias Metabólicas , Oxirredução , Espécies Reativas de Oxigênio , Sensibilidade e Especificidade
5.
Food Microbiol ; 86: 103314, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31703869

RESUMO

The aim of this study was to investigate the antibacterial effect of 460-470 nm light-emitting diode (LED460-470nm) illumination against pathogens and spoilage bacteria on the surface of agar media and packaged sliced cheese. LED460-470nm illumination highly inhibited the growth of Listeria monocytogenes and Pseudomonas fluorescens on agar media covered with oriented polypropylene (OPP) film (thickness, 0.03 mm). When sliced cheeses inoculated with L. monocytogenes or P. fluorescens and packaged with OPP film were illuminated by an LED460-470 nm at 4 or 25 °C, reduction levels of L. monocytogenes and P. fluorescens on packaged slice cheese were higher at 4 °C than at 25 °C. There were no significant differences in color between non-illuminated and illuminated sliced cheese after storage for 7 d at 4 °C. LED460-470 nm illumination at 4 °C for 4 d caused cellular injury of L. monocytogenes and P. fluorescens related to RNA, protein, and peptidoglycan metabolism, and a disruption of the cell membrane and loss of cytoplasmic components were observed from TEM results. These results suggest that LED460-470 nm illumination, in combination with refrigeration temperatures, may be applied to extend the shelf-life of packaged slice cheese and minimize the risk of foodborne disease, without causing color deterioration.


Assuntos
Queijo/microbiologia , Conservação de Alimentos/métodos , Listeria monocytogenes/efeitos da radiação , Pseudomonas fluorescens/efeitos da radiação , Contaminação de Alimentos/análise , Contaminação de Alimentos/prevenção & controle , Luz , Pseudomonas fluorescens/crescimento & desenvolvimento
6.
Int J Mol Sci ; 21(21)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143364

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a widespread hepatic disorder in the United States and other Westernized countries. Nonalcoholic steatohepatitis (NASH), an advanced stage of NAFLD, can progress to end-stage liver disease, including cirrhosis and liver cancer. Poor understanding of mechanisms underlying NAFLD progression from simple steatosis to NASH has limited the development of effective therapies and biomarkers. An accumulating body of studies has suggested the importance of DNA methylation, which plays pivotal roles in NAFLD pathogenesis. DNA methylation signatures that can affect gene expression are influenced by environmental and lifestyle experiences such as diet, obesity, and physical activity and are reversible. Hence, DNA methylation signatures and modifiers in NAFLD may provide the basis for developing biomarkers indicating the onset and progression of NAFLD and therapeutics for NAFLD. Herein, we review an update on the recent findings in DNA methylation signatures and their roles in the pathogenesis of NAFLD and broaden people's perspectives on potential DNA methylation-related treatments and biomarkers for NAFLD.


Assuntos
Metilação de DNA , Epigênese Genética , Regulação da Expressão Gênica , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Animais , Progressão da Doença , Humanos
7.
Gut ; 68(6): 1076-1087, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30670575

RESUMO

OBJECTIVE: Uncertainty about acute liver failure (ALF) pathogenesis limits therapy. We postulate that ALF results from excessive reactivation of a fetal liver programme that is induced in hepatocytes when acutely injured livers regenerate. To evaluate this hypothesis, we focused on two molecules with known oncofetal properties in the liver, Yes-associated protein-1 (YAP1) and Insulin-like growth factor-2 RNA-binding protein-3 (IGF2BP3). DESIGN: We compared normal liver with explanted livers of patients with ALF to determine if YAP1 and IGF2BP3 were induced; assessed whether these factors are upregulated when murine livers regenerate; determined if YAP1 and IGF2BP3 cooperate to activate the fetal programme in adult hepatocytes; and identified upstream signals that control these factors and thereby hepatocyte maturity during recovery from liver injury. RESULTS: Livers of patients with ALF were massively enriched with hepatocytes expressing IGF2BP3, YAP1 and other fetal markers. Less extensive, transient accumulation of similar fetal-like cells that were proliferative and capable of anchorage-independent growth occurred in mouse livers that were regenerating after acute injury. Fetal reprogramming of hepatocytes was YAP1-dependent and involved YAP1-driven reciprocal modulation of let7 microRNAs and IGF2BP3, factors that negatively regulate each other to control fate decisions in fetal cells. Directly manipulating IGF2BP3 expression controlled the fetal-like phenotype regardless of YAP1 activity, proving that IGF2BP3 is the proximal mediator of this YAP1-directed fate. CONCLUSION: After acute liver injury, hepatocytes are reprogrammed to fetal-like cells by a YAP1-dependent mechanism that differentially regulates let7 and IGF2BP3, identifying novel therapeutic targets for ALF.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Hepatócitos/metabolismo , Falência Hepática Aguda/metabolismo , Falência Hepática Aguda/patologia , Regeneração Hepática/genética , Fosfoproteínas/genética , Ubiquitina-Proteína Ligases/metabolismo , Análise de Variância , Animais , Biomarcadores/sangue , Estudos de Casos e Controles , Células Cultivadas , Hepatócitos/citologia , Humanos , Regeneração Hepática/fisiologia , Masculino , Camundongos , MicroRNAs/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/métodos , Valores de Referência , Fatores de Transcrição , Regulação para Cima , Proteínas de Sinalização YAP
8.
Gastroenterology ; 154(5): 1465-1479.e13, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29305935

RESUMO

BACKGROUND & AIMS: Cirrhosis results from accumulation of myofibroblasts derived from quiescent hepatic stellate cells (Q-HSCs); it regresses when myofibroblastic HSCs are depleted. Hedgehog signaling promotes transdifferentiation of HSCs by activating Yes-associated protein 1 (YAP1 or YAP) and inducing aerobic glycolysis. However, increased aerobic glycolysis alone cannot meet the high metabolic demands of myofibroblastic HSCs. Determining the metabolic processes of these cells could lead to strategies to prevent progressive liver fibrosis, so we investigated whether glutaminolysis (conversion of glutamine to alpha-ketoglutarate) sustains energy metabolism and permits anabolism when Q-HSCs become myofibroblastic, and whether this is controlled by hedgehog signaling to YAP. METHODS: Primary HSCs were isolated from C57BL/6 or Smoflox/flox mice; we also performed studies with rat and human myofibroblastic HSCs. We measured changes of glutaminolytic genes during culture-induced primary HSC transdifferentiation. Glutaminolysis was disrupted in cells by glutamine deprivation or pathway inhibitors (bis-2-[5-phenylacetamido-1,2,4-thiadiazol-2-yl] ethyl sulfide, CB-839, epigallocatechin gallate, and aminooxyacetic acid), and effects on mitochondrial respiration, cell growth and migration, and fibrogenesis were measured. Hedgehog signaling to YAP was disrupted in cells by adenovirus expression of Cre-recombinase or by small hairpin RNA knockdown of YAP. Hedgehog and YAP activity were inhibited by incubation of cells with cyclopamine or verteporfin, and effects on glutaminolysis were measured. Acute and chronic liver fibrosis were induced in mice by intraperitoneal injection of CCl4 or methionine choline-deficient diet. Some mice were then given injections of bis-2-[5-phenylacetamido-1,2,4-thiadiazol-2-yl] ethyl sulfide to inhibit glutaminolysis, and myofibroblast accumulation was measured. We also performed messenger RNA and immunohistochemical analyses of percutaneous liver biopsies from healthy human and 4 patients with no fibrosis, 6 patients with mild fibrosis, and 3 patients with severe fibrosis. RESULTS: Expression of genes that regulate glutaminolysis increased during transdifferentiation of primary Q-HSCs into myofibroblastic HSCs, and inhibition of glutaminolysis disrupted transdifferentiation. Blocking glutaminolysis in myofibroblastic HSCs suppressed mitochondrial respiration, cell growth and migration, and fibrogenesis; replenishing glutaminolysis metabolites to these cells restored these activities. Knockout of the hedgehog signaling intermediate smoothened or knockdown of YAP inhibited expression of glutaminase, the rate-limiting enzyme in glutaminolysis. Hedgehog and YAP inhibitors blocked glutaminolysis and suppressed myofibroblastic activities in HSCs. In livers of patients and of mice with acute or chronic fibrosis, glutaminolysis was induced in myofibroblastic HSCs. In mice with liver fibrosis, inhibition of glutaminase blocked accumulation of myofibroblasts and fibrosis progression. CONCLUSIONS: Glutaminolysis controls accumulation of myofibroblast HSCs in mice and might be a therapeutic target for cirrhosis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Metabolismo Energético , Glutamina/metabolismo , Proteínas Hedgehog/metabolismo , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/metabolismo , Fígado/metabolismo , Miofibroblastos/metabolismo , Fosfoproteínas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Estudos de Casos e Controles , Proteínas de Ciclo Celular , Proliferação de Células , Transdiferenciação Celular , Células Cultivadas , Reprogramação Celular , Regulação da Expressão Gênica , Glutaminase/metabolismo , Proteínas Hedgehog/genética , Células Estreladas do Fígado/patologia , Humanos , Ácidos Cetoglutáricos/metabolismo , Fígado/patologia , Cirrose Hepática/genética , Cirrose Hepática/patologia , Cirrose Hepática Experimental/genética , Cirrose Hepática Experimental/metabolismo , Cirrose Hepática Experimental/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/patologia , Miofibroblastos/patologia , Fenótipo , Fosfoproteínas/genética , Interferência de RNA , Ratos , Transdução de Sinais , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Fatores de Tempo , Fatores de Transcrição , Transfecção , Proteínas de Sinalização YAP
9.
Cell Physiol Biochem ; 48(3): 1215-1229, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30045014

RESUMO

BACKGROUND/AIMS: Myofibroblasts (MF) derived from quiescent nonfibrogenic hepatic stellate cells (HSC) are the major sources of fibrous matrix in cirrhosis. Because many factors interact to regulate expansion and regression of MF-HSC populations, efforts to prevent cirrhosis by targeting any one factor have had limited success, motivating research to identify mechanisms that integrate these diverse inputs. As key components of RNA regulons, RNA binding proteins (RBPs) may fulfill this function by orchestrating changes in the expression of multiple genes that must be coordinately regulated to affect the complex phenotypic modifications required for HSC transdifferentiation. METHODS: We profiled the transcriptomes of quiescent and MF-HSC to identify RBPs that were differentially-expressed during HSC transdifferentiation, manipulated the expression of the most significantly induced RBP, insulin like growth factor 2 binding protein 3 (Igf2bp3), and evaluated transcriptomic and phenotypic effects. RESULTS: Depleting Igf2bp3 changed the expression of thousands of HSC genes, including multiple targets of TGF-ß signaling, and caused HSCs to reacquire a less proliferative, less myofibroblastic phenotype. RNA immunoprecipitation assays demonstrated that some of these effects were mediated by direct physical interactions between Igf2bp3 and mRNAs that control proliferative activity and mesenchymal traits. Inhibiting TGF-ß receptor-1 signaling revealed a microRNA-dependent mechanism that induces Igf2bp3. CONCLUSIONS: The aggregate results indicate that HSC transdifferentiation is ultimately dictated by Igf2bp3-dependent RNA regulons and thus, can be controlled simply by manipulating Igf2bp3.


Assuntos
Transdiferenciação Celular , Regulação da Expressão Gênica , Células Estreladas do Fígado/citologia , Miofibroblastos/citologia , Proteínas de Ligação a RNA/genética , Transcriptoma , Animais , Células Cultivadas , Células Estreladas do Fígado/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Miofibroblastos/metabolismo , Proteínas de Ligação a RNA/metabolismo
10.
Cell Physiol Biochem ; 40(1-2): 263-276, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27855416

RESUMO

BACKGROUND/AIMS: Radiation-induced liver disease (RILD) is a major obstacle in treating liver cancer; however, the mechanisms underlying RILD development remain unclear. Hedgehog (Hh) orchestrates liver response to injury. Herein, we investigated the liver response with Hh to fractionated irradiation (FI) using a small murine model for RILD. METHODS: Male mice exposed to liver-targeted FI with 6Gy in 5 consecutive weekly fractions were sacrificed at one day after weekly irradiation and 6 or 10 weeks post 5th FI for the acute and late response model, respectively. RESULTS: The levels of ALT/AST and apoptosis were elevated in all radiation groups. The expression of Hh ligand, Sonic and Indian Hh, and Hh activator, smoothened and gli2, was higher in the acute groups than the control group. Pro-fibrogenic markers were also up-regulated in this model compared with the control group. Histomorphological changes and ballooned hepatocytes were observed in the late response model. Both the expression of Hh and profibrotic genes and the fibrosis level increased in this model compared with the control groups. CONCLUSION: Enhanced Hedgehog signaling and liver injury with fibrosis in RILD murine model suggests hedgehog as the potential regulator in RILD progression and the suitability of this model for studying RILD.


Assuntos
Raios gama , Proteínas Hedgehog/metabolismo , Fígado/patologia , Fígado/efeitos da radiação , Radioterapia , Transdução de Sinais/efeitos da radiação , Animais , Biomarcadores/metabolismo , Modelos Animais de Doenças , Ligantes , Fígado/metabolismo , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Masculino , Camundongos Endogâmicos C57BL , Lesões por Radiação/metabolismo , Lesões por Radiação/patologia , Reação em Cadeia da Polimerase em Tempo Real , Células-Tronco/citologia , Células-Tronco/efeitos da radiação , Regulação para Cima/efeitos da radiação
11.
Int J Mol Sci ; 17(6)2016 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-27322257

RESUMO

Liver fibrosis is a major pathological feature of chronic liver diseases, including liver cancer. MicroRNAs (miRNAs), small noncoding RNAs, regulate gene expression posttranscriptionally and play important roles in various kinds of diseases; however, miRNA-associated hepatic fibrogenesis and its acting mechanisms are poorly investigated. Therefore, we performed an miRNA microarray in the fibrotic livers of Mus musculus treated with carbon-tetrachloride (CCl4) and analyzed the biological functions engaged by the target genes of differentially-expressed miRNAs through gene ontology (GO) and in-depth pathway enrichment analysis. Herein, we found that four miRNAs were upregulated and four miRNAs were downregulated more than two-fold in CCl4-treated livers compared to a control liver. Eight miRNAs were predicted to target a total of 4079 genes. GO analysis revealed that those target genes were located in various cellular compartments, including cytoplasm, nucleolus and cell surface, and they were involved in protein-protein or protein-DNA bindings, which influence the signal transductions and gene transcription. Furthermore, pathway enrichment analysis demonstrated that the 72 subspecialized signaling pathways were associated with CCl4-induced liver fibrosis and were mostly classified into metabolic function-related pathways. These results suggest that CCl4 induces liver fibrosis by disrupting the metabolic pathways. In conclusion, we presented several miRNAs and their biological processes that might be important in the progression of liver fibrosis; these findings help increase the understanding of liver fibrogenesis and provide novel ideas for further studies of the role of miRNAs in liver fibrosis.


Assuntos
Cirrose Hepática/genética , MicroRNAs/genética , Animais , Tetracloreto de Carbono/toxicidade , Redes Reguladoras de Genes , Cirrose Hepática/etiologia , Cirrose Hepática/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Transdução de Sinais
12.
Mol Cells ; 47(2): 100010, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38237744

RESUMO

Recently, the incidence of metabolic dysfunction-associated steatotic liver disease (MASLD) is increasing due to the high prevalence of metabolic conditions, such as obesity and type 2 diabetes mellitus. Steatotic liver is a hotspot for cancer metastasis in MASLD. Altered lipid metabolism, a hallmark of MASLD, remodels the tissue microenvironment, making it conducive to the growth of metastatic liver cancer. Tumors exacerbate the dysregulation of hepatic metabolism by releasing extracellular vesicles and particles into the liver. Altered lipid metabolism influences the proliferation, differentiation, and functions of immune cells, contributing to the formation of an immunosuppressive and metastasis-prone liver microenvironment in MASLD. This review discusses the mechanisms by which the steatotic liver promotes liver metastasis progression, focusing on its role in fostering an immunosuppressive microenvironment in MASLD. Furthermore, this review highlights lipid metabolism manipulation strategies for the therapeutic management of metastatic liver cancer.


Assuntos
Diabetes Mellitus Tipo 2 , Fígado Gorduroso , Neoplasias Hepáticas , Doenças Metabólicas , Humanos , Metabolismo dos Lipídeos , Causalidade , Microambiente Tumoral
13.
Adv Sci (Weinh) ; : e2400063, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976559

RESUMO

Epithelial-stromal interplay through chemomechanical cues from cells and matrix propels cancer progression. Elevated tissue stiffness in potentially malignant tissues suggests a link between matrix stiffness and enhanced tumor growth. In this study, employing chronic oral/esophageal injury and cancer models, it is demonstrated that epithelial-stromal interplay through matrix stiffness and Hedgehog (Hh) signaling is key in compounding cancer development. Epithelial cells actively interact with fibroblasts, exchanging mechanoresponsive signals during the precancerous stage. Specifically, epithelial cells release Sonic Hh, activating fibroblasts to produce matrix proteins and remodeling enzymes, resulting in tissue stiffening. Subsequently, basal epithelial cells adjacent to the stiffened tissue become proliferative and undergo epithelial-to-mesenchymal transition, acquiring migratory and invasive properties, thereby promoting invasive tumor growth. Notably, transcriptomic programs of oncogenic GLI2, mechano-activated by actin cytoskeletal tension, govern this process, elucidating the crucial role of non-canonical GLI2 activation in orchestrating the proliferation and mesenchymal transition of epithelial cells. Furthermore, pharmacological intervention targeting tissue stiffening proves highly effective in slowing cancer progression. These findings underscore the impact of epithelial-stromal interplay through chemo-mechanical (Hh-stiffness) signaling in cancer development, and suggest that targeting tissue stiffness holds promise as a strategy to disrupt chemo-mechanical feedback, enabling effective cancer treatment.

14.
BMB Rep ; 56(2): 145-152, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36724905

RESUMO

Mechanosensitive ion channels sense mechanical stimuli applied directly to the cellular membranes or indirectly through their tethered components, provoking cellular mechanoresponses. Among others, Piezo1 mechanosensitive ion channel is a relatively novel Ca2+-permeable channel that is primarily present in non-sensory tissues. Recent studies have demonstrated that Piezo1 plays an important role in Ca2+-dependent cell death, including apoptosis and ferroptosis, in the presence of mechanical stimuli. It has also been proven that cancer cells are sensitive to mechanical stresses due to higher expression levels of Piezo1 compared to normal cells. In this review, we discuss Piezo1-mediated cell death mechanisms and therapeutic strategies to inhibit or induce cell death by modulating the activity of Piezo1 with pharmacological drugs or mechanical perturbations induced by stretch and ultrasound. [BMB Reports 2023; 56(3): 145-152].


Assuntos
Ferroptose , Canais Iônicos/metabolismo , Apoptose , Membrana Celular/metabolismo , Mecanotransdução Celular/fisiologia
15.
Biomaterials ; 297: 122101, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37023528

RESUMO

Immunotherapy, despite its promise for future anti-cancer approach, faces significant challenges, such as off-tumor side effects, innate or acquired resistance, and limited infiltration of immune cells into stiffened extracellular matrix (ECM). Recent studies have highlighted the importance of mechano-modulation/-activation of immune cells (mainly T cells) for effective caner immunotherapy. Immune cells are highly sensitive to the applied physical forces and matrix mechanics, and reciprocally shape the tumor microenvironment. Engineering T cells with tuned properties of materials (e.g., chemistry, topography, and stiffness) can improve their expansion and activation ex vivo, and their ability to mechano-sensing the tumor specific ECM in vivo where they perform cytotoxic effects. T cells can also be exploited to secrete enzymes that soften ECM, thus increasing tumor infiltration and cellular therapies. Furthermore, T cells, such as chimeric antigen receptor (CAR)-T cells, genomic engineered to be spatiotemporally controllable by physical stimuli (e.g., ultrasound, heat, or light), can mitigate adverse off-tumor effects. In this review, we communicate these recent cutting-edge endeavors devoted to mechano-modulating/-activating T cells for effective cancer immunotherapy, and discuss future prospects and challenges in this field.


Assuntos
Neoplasias , Linfócitos T , Humanos , Imunoterapia , Neoplasias/terapia , Terapia Baseada em Transplante de Células e Tecidos , Imunoterapia Adotiva , Microambiente Tumoral
16.
Food Sci Biotechnol ; 32(1): 111-120, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36606091

RESUMO

Fresh food products can be contaminated with pathogenic bacteria in various agricultural environments. Potting soil is sterilized by heat sterilization and then reused. This study evaluated the effects of three sterilization methods (non-sterilized, pasteurized, and sterilized) on the survival of pathogenic bacteria in potting soil during storage for 60 days at 5, 15, 25, and 35 °C. The reduction in Escherichia coli O157:H7, Salmonella Typhimurium, and Staphylococcus aureus in potting soil was higher at higher temperatures (25 and 35 °C) than at lower temperatures (5 and 15 °C). The population of pathogenic bacteria in pasteurized and sterilized potting soil was reduced below the detectable levels within 30 days at 35 °C. In contrast, the population of Bacillus cereus did not change in potting soil during storage for 60 days at all temperatures. These results indicate that sterilization and storage temperature of potting soil are critical factors influencing the survival of pathogenic bacteria.

17.
Adv Sci (Weinh) ; 10(32): e2303395, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37727069

RESUMO

Advancing the technologies for cellular reprogramming with high efficiency has significant impact on regenerative therapy, disease modeling, and drug discovery. Biophysical cues can tune the cell fate, yet the precise role of external physical forces during reprogramming remains elusive. Here the authors show that temporal cyclic-stretching of fibroblasts significantly enhances the efficiency of induced pluripotent stem cell (iPSC) production. Generated iPSCs are proven to express pluripotency markers and exhibit in vivo functionality. Bulk RNA-sequencing reveales that cyclic-stretching enhances biological characteristics required for pluripotency acquisition, including increased cell division and mesenchymal-epithelial transition. Of note, cyclic-stretching activates key mechanosensitive molecules (integrins, perinuclear actins, nesprin-2, and YAP), across the cytoskeletal-to-nuclear space. Furthermore, stretch-mediated cytoskeletal-nuclear mechano-coupling leads to altered epigenetic modifications, mainly downregulation in H3K9 methylation, and its global gene occupancy change, as revealed by genome-wide ChIP-sequencing and pharmacological inhibition tests. Single cell RNA-sequencing further identifies subcluster of mechano-responsive iPSCs and key epigenetic modifier in stretched cells. Collectively, cyclic-stretching activates iPSC reprogramming through mechanotransduction process and epigenetic changes accompanied by altered occupancy of mechanosensitive genes. This study highlights the strong link between external physical forces with subsequent mechanotransduction process and the epigenetic changes with expression of related genes in cellular reprogramming, holding substantial implications in the field of cell biology, tissue engineering, and regenerative medicine.


Assuntos
Células-Tronco Pluripotentes Induzidas , Mecanotransdução Celular , Reprogramação Celular/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Epigênese Genética , RNA/metabolismo
18.
Trends Mol Med ; 28(2): 155-169, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34973934

RESUMO

Cells sense the biophysical properties of the tumor microenvironment (TME) and adopt these signals in their development, progression, and metastatic dissemination. Recent work highlights the mechano-responsiveness of cells in tumors and the underlying mechanisms. Furthermore, approaches to mechano-modulating diverse types of cell have emerged aiming to inhibit tumor growth and metastasis. These include targeting mechanosensitive machineries in cancer cells to induce apoptosis, intervening matrix stiffening incurred by cancer-associated fibroblasts (CAFs) in both primary and metastatic tumor sites, and modulating matrix mechanics to improve immune cell therapeutic efficacy. This review is envisaged to help scientists and clinicians in cancer research to advance understanding of the cellular mechano-responsiveness in TME, and to harness these concepts for cancer mechanotherapies.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias , Fibroblastos Associados a Câncer/patologia , Matriz Extracelular/metabolismo , Humanos , Neoplasias/patologia , Microambiente Tumoral
19.
Biomaterials ; 289: 121792, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36116170

RESUMO

Cell reprogramming can satisfy the demands of obtaining specific cell types for applications such as tissue regeneration and disease modeling. Here we report the reprogramming of human fibroblasts to produce chemically-induced osteogenic cells (ciOG), and explore the potential uses of ciOG in bone repair and disease treatment. A chemical cocktail of RepSox, forskolin, and phenamil was used for osteogenic induction of fibroblasts by activation of RUNX2 expression. Following a maturation, the cells differentiated toward an osteoblast phenotype that produced mineralized nodules. Bulk and single-cell RNA sequencing identified a distinct ciOG population. ciOG formed mineralized tissue in an ectopic site of immunodeficiency mice, unlike the original fibroblasts. Osteogenic reprogramming was modulated under engineered culture substrates. When generated on a nanofiber substrate ciOG accelerated bone matrix formation in a calvarial defect, indicating that the engineered biomaterial promotes the osteogenic capacity of ciOG in vivo. Furthermore, the ciOG platform recapitulated the genetic bone diseases Proteus syndrome and osteogenesis imperfecta, allowing candidate drug testing. The reprogramming of human fibroblasts into osteogenic cells with a chemical cocktail thus provides a source of specialized cells for use in bone tissue engineering and disease modeling.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core , Engenharia Tecidual , Animais , Materiais Biocompatíveis/metabolismo , Regeneração Óssea/fisiologia , Diferenciação Celular/fisiologia , Células Cultivadas , Colforsina/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Humanos , Camundongos , Osteoblastos , Osteogênese/fisiologia
20.
Epigenetics ; 17(11): 1446-1461, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35188871

RESUMO

Non-Alcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease in children. Epigenetic alterations, such as through DNA methylation (DNAm), may link adverse childhood exposures and fatty liver and provide non-invasive methods for identifying children at high risk for NAFLD and associated metabolic dysfunction. We investigated the association between differential DNAm and liver fat content (LFC) and liver injury in pre-adolescent children. Leveraging data from the Newborn Epigenetics Study (NEST), we enrolled 90    mother-child dyads and used linear regression to identify CpG sites and differentially methylated regions (DMRs) in peripheral blood associated with LFC and alanine aminotransferase (ALT) levels in 7-12yo children. DNAm was measured using Infinium HumanMethylationEPIC BeadChips (Illumina). LFC and fibrosis were quantified by magnetic resonance imaging proton density fat fraction and elastography. Median LFC was 1.4% (range, 0.3-13.4%) and MRE was 2.5 kPa (range, 1.5-3.6kPa). Three children had LFC ≥ 5%, while six (7.6%) met our definition of NAFLD (LFC ≥ 3.7%). All children with NAFLD were obese and five were Black. LFC was associated with 88 DMRs and 106 CpGs (FDR<5%). The top two CpGs, cg25474373 and cg07264203, mapped to or near RFTN2 and PRICKLE2 genes. These two CpG sites were also significantly associated with a NAFLD diagnosis. As higher LFC associates with an adverse cardiometabolic profile already in childhood, altered DNAm may identify these children early in disease course for targeted intervention. Larger, longitudinal studies are needed to validate these findings and determine mechanistic relevance.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Adolescente , Humanos , Recém-Nascido , Alanina Transaminase/genética , Alanina Transaminase/metabolismo , Metilação de DNA , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Hepatopatia Gordurosa não Alcoólica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA