RESUMO
T-lineage acute lymphoblastic leukaemia (T-ALL) is a high-risk tumour1 that has eluded comprehensive genomic characterization, which is partly due to the high frequency of noncoding genomic alterations that result in oncogene deregulation2,3. Here we report an integrated analysis of genome and transcriptome sequencing of tumour and remission samples from more than 1,300 uniformly treated children with T-ALL, coupled with epigenomic and single-cell analyses of malignant and normal T cell precursors. This approach identified 15 subtypes with distinct genomic drivers, gene expression patterns, developmental states and outcomes. Analyses of chromatin topology revealed multiple mechanisms of enhancer deregulation that involve enhancers and genes in a subtype-specific manner, thereby demonstrating widespread involvement of the noncoding genome. We show that the immunophenotypically described, high-risk entity of early T cell precursor ALL is superseded by a broader category of 'early T cell precursor-like' leukaemia. This category has a variable immunophenotype and diverse genomic alterations of a core set of genes that encode regulators of hematopoietic stem cell development. Using multivariable outcome models, we show that genetic subtypes, driver and concomitant genetic alterations independently predict treatment failure and survival. These findings provide a roadmap for the classification, risk stratification and mechanistic understanding of this disease.
Assuntos
Genoma Humano , Genômica , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Criança , Feminino , Humanos , Masculino , Cromatina/genética , Cromatina/metabolismo , Elementos Facilitadores Genéticos/genética , Epigenômica , Regulação Leucêmica da Expressão Gênica , Genoma Humano/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Análise de Célula Única , Transcriptoma/genética , Linfócitos T/citologia , Linfócitos T/patologiaRESUMO
ABSTRACT: UBTF tandem duplications (UBTF-TDs) have recently emerged as a recurrent alteration in pediatric and adult acute myeloid leukemia (AML). UBTF-TD leukemias are characterized by a poor response to conventional chemotherapy and a transcriptional signature that mirrors NUP98-rearranged and NPM1-mutant AMLs, including HOX-gene dysregulation. However, the mechanism by which UBTF-TD drives leukemogenesis remains unknown. In this study, we investigated the genomic occupancy of UBTF-TD in transformed cord blood CD34+ cells and patient-derived xenograft models. We found that UBTF-TD protein maintained genomic occupancy at ribosomal DNA loci while also occupying genomic targets commonly dysregulated in UBTF-TD myeloid malignancies, such as the HOXA/HOXB gene clusters and MEIS1. These data suggest that UBTF-TD is a gain-of-function alteration that results in mislocalization to genomic loci dysregulated in UBTF-TD leukemias. UBTF-TD also co-occupies key genomic loci with KMT2A and menin, which are known to be key partners involved in HOX-dysregulated leukemias. Using a protein degradation system, we showed that stemness, proliferation, and transcriptional signatures are dependent on sustained UBTF-TD localization to chromatin. Finally, we demonstrate that primary cells from UBTF-TD leukemias are sensitive to the menin inhibitor SNDX-5613, resulting in markedly reduced in vitro and in vivo tumor growth, myeloid differentiation, and abrogation of the UBTF-TD leukemic expression signature. These findings provide a viable therapeutic strategy for patients with this high-risk AML subtype.
Assuntos
Proteínas de Homeodomínio , Leucemia Mieloide Aguda , Humanos , Criança , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Fatores de Transcrição , Proteína Meis1/genéticaRESUMO
Despite recent progress in identifying the genetic drivers of acute lymphoblastic leukemia (ALL), prognosis remains poor for those individuals who experience disease recurrence. Moreover, acute leukemias of ambiguous lineage lack a biologically informed framework to guide classification and therapy. These needs have driven the adoption of multiple complementary single-cell sequencing approaches to explore key issues in the biology of these leukemias, including cell of origin, developmental hierarchy and ontogeny, and the molecular heterogeneity driving pathogenesis, progression, and therapeutic responsiveness. There are multiple single-cell techniques for profiling a specific modality, including RNA, DNA, chromatin accessibility and methylation; and an expanding range of approaches for simultaneous analysis of multiple modalities. Single-cell sequencing approaches have also enabled characterization of cell-intrinsic and -extrinsic features of ALL biology. In this review we describe these approaches and highlight the extensive heterogeneity that underpins ALL gene expression, cellular differentiation, and clonal architecture throughout disease pathogenesis and treatment resistance. In addition, we discuss the importance of the dynamic interactions that occur between leukemia cells and the nonleukemia microenvironment. We discuss potential opportunities and limitations of single-cell sequencing for the study of ALL biology and treatment responsiveness.
Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Linfócitos , Doença Aguda , Prognóstico , Análise de Célula Única , Microambiente TumoralRESUMO
Advancing cure rates for high-risk acute lymphoblastic leukemia (ALL) has been limited by the lack of agents that effectively kill leukemic cells, sparing normal hematopoietic tissue. Molecular glues direct the ubiquitin ligase cellular machinery to target neosubstrates for protein degradation. We developed a novel cereblon modulator, SJ6986, that exhibits potent and selective degradation of GSPT1 and GSPT2 and cytotoxic activity against childhood cancer cell lines. Here, we report in vitro and in vivo testing of the activity of this agent in a panel of ALL cell lines and xenografts. SJ6986 exhibited similar cytotoxicity to the previously described GSPT1 degrader CC-90009 in a panel of leukemia cell lines in vitro, resulting in apoptosis and perturbation of cell cycle progression. SJ6986 was more effective than CC-90009 in suppressing leukemic cell growth in vivo, partly attributable to favorable pharmacokinetic properties, and did not significantly impair differentiation of human CD34+ cells ex vivo. Genome-wide CRISPR/Cas9 screening of ALL cell lines treated with SJ6986 confirmed that components of the CRL4CRBN complex, associated adaptors, regulators, and effectors were integral in mediating the action of SJ6986. SJ6986 is a potent, selective, orally bioavailable GSPT1/2 degrader that shows broad antileukemic activity and has potential for clinical development.
Assuntos
Antineoplásicos , Piperidonas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Criança , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Piperidonas/uso terapêutico , Isoindóis/uso terapêuticoRESUMO
Intrachromosomal amplification of chromosome 21 defines a subtype of high-risk childhood acute lymphoblastic leukemia (iAMP21-ALL) characterized by copy number changes and complex rearrangements of chromosome 21. The genomic basis of iAMP21-ALL and the pathogenic role of the region of amplification of chromosome 21 to leukemogenesis remains incompletely understood. In this study, using integrated whole genome and transcriptome sequencing of 124 patients with iAMP21-ALL, including rare cases arising in the context of constitutional chromosomal aberrations, we identified subgroups of iAMP21-ALL based on the patterns of copy number alteration and structural variation. This large data set enabled formal delineation of a 7.8 Mb common region of amplification harboring 71 genes, 43 of which were differentially expressed compared with non-iAMP21-ALL ones, including multiple genes implicated in the pathogenesis of acute leukemia (CHAF1B, DYRK1A, ERG, HMGN1, and RUNX1). Using multimodal single-cell genomic profiling, including single-cell whole genome sequencing of 2 cases, we documented clonal heterogeneity and genomic evolution, demonstrating that the acquisition of the iAMP21 chromosome is an early event that may undergo progressive amplification during disease ontogeny. We show that UV-mutational signatures and high mutation load are characteristic secondary genetic features. Although the genomic alterations of chromosome 21 are variable, these integrated genomic analyses and demonstration of an extended common minimal region of amplification broaden the definition of iAMP21-ALL for more precise diagnosis using cytogenetic or genomic methods to inform clinical management.
Assuntos
Cromossomos Humanos Par 21 , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Criança , Cromossomos Humanos Par 21/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Aberrações Cromossômicas , Citogenética , Genômica , Fator 1 de Modelagem da Cromatina/genéticaRESUMO
Understanding the mechanisms of drug action in malarial parasites is crucial for the development of new drugs to combat infection and to counteract drug resistance. Proteomics is a widely used approach to study host-pathogen systems and to identify drug protein targets. Plasmodione is an antiplasmodial early-lead drug exerting potent activities against young asexual and sexual blood stages inâ vitro with low toxicity to host cells. To elucidate its molecular mechanisms, an affinity-based protein profiling (AfBPP) approach was applied to yeast and P. falciparum proteomes. New (pro-) AfBPP probes based on the 3-benz(o)yl-6-fluoro-menadione scaffold were synthesized. With optimized conditions of both photoaffinity labeling and click reaction steps, the AfBPP protocol was then applied to a yeast proteome, yielding 11 putative drug-protein targets. Among these, we found four proteins associated with oxidoreductase activities, the hypothesized type of targets for plasmodione and its metabolites, and other proteins associated with the mitochondria. In Plasmodium parasites, the MS analysis revealed 44 potential plasmodione targets that need to be validated in further studies. Finally, the localization of a 3-benzyl-6-fluoromenadione AfBPP probe was studied in the subcellular structures of the parasite at the trophozoite stage.
Assuntos
Antimaláricos , Plasmodium falciparum , Proteômica , Vitamina K 3 , Antimaláricos/farmacologia , Antimaláricos/química , Plasmodium falciparum/efeitos dos fármacos , Vitamina K 3/farmacologia , Vitamina K 3/química , Vitamina K 3/metabolismo , Proteínas de Protozoários/metabolismo , Marcadores de Fotoafinidade/química , Marcadores de Fotoafinidade/farmacologia , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Sondas Moleculares/química , Sondas Moleculares/farmacologia , Proteoma/análise , Proteoma/metabolismo , Estrutura MolecularRESUMO
Leukemic transformation (LT) of myeloproliferative neoplasm (MPN) has a dismal prognosis and is largely fatal. Mutational inactivation of TP53 is the most common somatic event in LT; however, the mechanisms by which TP53 mutations promote LT remain unresolved. Using an allelic series of mouse models of Jak2/Trp53 mutant MPN, we identify that only biallelic inactivation of Trp53 results in LT (to a pure erythroleukemia [PEL]). This PEL arises from the megakaryocyte-erythroid progenitor population. Importantly, the bone morphogenetic protein 2/SMAD pathway is aberrantly activated during LT and results in abnormal self-renewal of megakaryocyte-erythroid progenitors. Finally, we identify that Jak2/Trp53 mutant PEL is characterized by recurrent copy number alterations and DNA damage. Using a synthetic lethality strategy, by targeting active DNA repair pathways, we show that this PEL is highly sensitive to combination WEE1 and poly(ADP-ribose) polymerase inhibition. These observations yield new mechanistic insights into the process of p53 mutant LT and offer new, clinically translatable therapeutic approaches.
Assuntos
Transtornos Mieloproliferativos , Proteína Supressora de Tumor p53 , Animais , Proteína Morfogenética Óssea 2/genética , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Células Progenitoras de Megacariócitos e Eritrócitos/metabolismo , Megacariócitos/metabolismo , Camundongos , Mutação , Transtornos Mieloproliferativos/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismoRESUMO
Transcriptome sequencing has identified multiple subtypes of B-progenitor acute lymphoblastic leukemia (B-ALL) of prognostic significance, but a minority of cases lack a known genetic driver. Here, we used integrated whole-genome (WGS) and -transcriptome sequencing (RNA-seq), enhancer mapping, and chromatin topology analysis to identify previously unrecognized genomic drivers in B-ALL. Newly diagnosed (n = 3221) and relapsed (n = 177) B-ALL cases with tumor RNA-seq were studied. WGS was performed to detect mutations, structural variants, and copy number alterations. Integrated analysis of histone 3 lysine 27 acetylation and chromatin looping was performed using HiChIP. We identified a subset of 17 newly diagnosed and 5 relapsed B-ALL cases with a distinct gene expression profile and 2 universal and unique genomic alterations resulting from aberrant recombination-activating gene activation: a focal deletion downstream of PAN3 at 13q12.2 resulting in CDX2 deregulation by the PAN3 enhancer and a focal deletion of exons 18-21 of UBTF at 17q21.31 resulting in a chimeric fusion, UBTF::ATXN7L3. A subset of cases also had rearrangement and increased expression of the PAX5 gene, which is otherwise uncommon in B-ALL. Patients were more commonly female and young adult with median age 35 (range,12-70 years). The immunophenotype was characterized by CD10 negativity and immunoglobulin M positivity. Among 16 patients with known clinical response, 9 (56.3%) had high-risk features including relapse (n = 4) or minimal residual disease >1% at the end of remission induction (n = 5). CDX2-deregulated, UBTF::ATXN7L3 rearranged (CDX2/UBTF) B-ALL is a high-risk subtype of leukemia in young adults for which novel therapeutic approaches are required.
Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adolescente , Adulto , Idoso , Fator de Transcrição CDX2/genética , Criança , Cromatina , Feminino , Genômica/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Pol1 do Complexo de Iniciação de Transcrição , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Prognóstico , Fatores de Transcrição/genética , Transcriptoma , Adulto JovemRESUMO
Myeloid neoplasms and acute leukemias derive from the clonal expansion of hematopoietic cells driven by somatic gene mutations. Although assessment of morphology plays a crucial role in the diagnostic evaluation of patients with these malignancies, genomic characterization has become increasingly important for accurate diagnosis, risk assessment, and therapeutic decision making. Conventional cytogenetics, a comprehensive and unbiased method for assessing chromosomal abnormalities, has been the mainstay of genomic testing over the past several decades and remains relevant today. However, more recent advances in sequencing technology have increased our ability to detect somatic mutations through the use of targeted gene panels, whole-exome sequencing, whole-genome sequencing, and whole-transcriptome sequencing or RNA sequencing. In patients with myeloid neoplasms, whole-genome sequencing represents a potential replacement for both conventional cytogenetic and sequencing approaches, providing rapid and accurate comprehensive genomic profiling. DNA sequencing methods are used not only for detecting somatically acquired gene mutations but also for identifying germline gene mutations associated with inherited predisposition to hematologic neoplasms. The 2022 International Consensus Classification of myeloid neoplasms and acute leukemias makes extensive use of genomic data. The aim of this report is to help physicians and laboratorians implement genomic testing for diagnosis, risk stratification, and clinical decision making and illustrates the potential of genomic profiling for enabling personalized medicine in patients with hematologic neoplasms.
Assuntos
Neoplasias Hematológicas , Leucemia Mieloide Aguda , Transtornos Mieloproliferativos , Neoplasias , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Mutação , Genômica , Neoplasias/genética , Neoplasias Hematológicas/genética , Tomada de Decisão ClínicaRESUMO
B-acute lymphoblastic leukaemia (B-ALL) is a haematological disease resulting from haematopoietic system dysfunction, leading to the unchecked growth of immature B lymphoblasts. The disease's complexity is underscored by the spectrum of genetic aberrations that underlie B-ALL entities, necessitating advanced genetic analyses for precise classification and risk determination. Prior to the adoption of next-generation sequencing into standard diagnostic practices, up to 30% of B-ALL cases were not assigned to specific entities due to the limitations of traditional diagnostic methods. The advent of comprehensive genomic analysis, especially whole-genome transcriptome sequencing, has significantly enhanced our understanding of B-ALL's molecular heterogeneity, paving the way for the exploration of novel, tailored treatment strategies. Furthermore, recent technological innovations, such as optical genome mapping, methylation profiling, and single-cell sequencing, have propelled forward the fields of cancer research and B-ALL management. These innovations introduce novel diagnostic approaches and prognostic markers, facilitating a deeper, more nuanced understanding of individual patient disease profiles. This review focuses on the latest diagnostic standards and assays for B-ALL, the importance of new technologies and biomarkers in enhancing diagnostic accuracy, and the expected role of innovative advancements in the future diagnosis and treatment of B-ALL.
RESUMO
Relapsed acute lymphoblastic leukaemia (ALL) is associated with resistance to chemotherapy and poor prognosis. Gain-of-function mutations in the 5'-nucleotidase, cytosolic II (NT5C2) gene induce resistance to 6-mercaptopurine and are selectively present in relapsed ALL. Yet, the mechanisms involved in NT5C2 mutation-driven clonal evolution during the initiation of leukaemia, disease progression and relapse remain unknown. Here we use a conditional-and-inducible leukaemia model to demonstrate that expression of NT5C2(R367Q), a highly prevalent relapsed-ALL NT5C2 mutation, induces resistance to chemotherapy with 6-mercaptopurine at the cost of impaired leukaemia cell growth and leukaemia-initiating cell activity. The loss-of-fitness phenotype of NT5C2+/R367Q mutant cells is associated with excess export of purines to the extracellular space and depletion of the intracellular purine-nucleotide pool. Consequently, blocking guanosine synthesis by inhibition of inosine-5'-monophosphate dehydrogenase (IMPDH) induced increased cytotoxicity against NT5C2-mutant leukaemia lymphoblasts. These results identify the fitness cost of NT5C2 mutation and resistance to chemotherapy as key evolutionary drivers that shape clonal evolution in relapsed ALL and support a role for IMPDH inhibition in the treatment of ALL.
Assuntos
5'-Nucleotidase/genética , 5'-Nucleotidase/metabolismo , Evolução Clonal , Resistencia a Medicamentos Antineoplásicos/genética , Mutação/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Animais , Proliferação de Células , Modelos Animais de Doenças , Feminino , Mutação com Ganho de Função/genética , Guanosina/biossíntese , Células HEK293 , Humanos , IMP Desidrogenase/antagonistas & inibidores , IMP Desidrogenase/metabolismo , Masculino , Mercaptopurina/farmacologia , Mercaptopurina/uso terapêutico , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Purinas/metabolismo , Receptor Notch1/metabolismo , Recidiva , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Mixed phenotype acute leukaemia (MPAL) is a high-risk subtype of leukaemia with myeloid and lymphoid features, limited genetic characterization, and a lack of consensus regarding appropriate therapy. Here we show that the two principal subtypes of MPAL, T/myeloid (T/M) and B/myeloid (B/M), are genetically distinct. Rearrangement of ZNF384 is common in B/M MPAL, and biallelic WT1 alterations are common in T/M MPAL, which shares genomic features with early T-cell precursor acute lymphoblastic leukaemia. We show that the intratumoral immunophenotypic heterogeneity characteristic of MPAL is independent of somatic genetic variation, that founding lesions arise in primitive haematopoietic progenitors, and that individual phenotypic subpopulations can reconstitute the immunophenotypic diversity in vivo. These findings indicate that the cell of origin and founding lesions, rather than an accumulation of distinct genomic alterations, prime tumour cells for lineage promiscuity. Moreover, these findings position MPAL in the spectrum of immature leukaemias and provide a genetically informed framework for future clinical trials of potential treatments for MPAL.
Assuntos
Leucemia Aguda Bifenotípica/genética , Leucemia Aguda Bifenotípica/patologia , Linhagem da Célula/genética , Análise Mutacional de DNA , Feminino , Variação Genética/genética , Genoma Humano/genética , Genômica , Humanos , Imunofenotipagem , Leucemia Aguda Bifenotípica/classificação , Masculino , Modelos Genéticos , Mutação/genética , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fenótipo , Transativadores/genéticaRESUMO
Thymic stromal lymphopoietin (TSLP), mainly expressed by epithelial cells, plays a central role in asthma. In humans, TSLP exists in two variants: the long form TSLP (lfTSLP) and a shorter TSLP isoform (sfTSLP). Macrophages (HLMs) and mast cells (HLMCs) are in close proximity in the human lung and play key roles in asthma. We evaluated the early proteolytic effects of tryptase and chymase released by HLMCs on TSLP by mass spectrometry. We also investigated whether TSLP and its fragments generated by these enzymes induce angiogenic factor release from HLMs. Mass spectrometry (MS) allowed the identification of TSLP cleavage sites caused by tryptase and chymase. Recombinant human TSLP treated with recombinant tryptase showed the production of 1-97 and 98-132 fragments. Recombinant chymase treatment of TSLP generated two peptides, 1-36 and 37-132. lfTSLP induced the release of VEGF-A, the most potent angiogenic factor, from HLMs. By contrast, the four TSLP fragments generated by tryptase and chymase failed to activate HLMs. Long-term TSLP incubation with furin generated two peptides devoid of activating property on HLMs. These results unveil an intricate interplay between mast cell-derived proteases and TSLP. These findings have potential relevance in understanding novel aspects of asthma pathobiology.
Assuntos
Asma , Linfopoietina do Estroma do Timo , Humanos , Triptases , Quimases , Indutores da Angiogênese , Serina Proteases , CitocinasRESUMO
Synaptic dysfunction and cognitive decline in Huntington's disease (HD) involve hyperactive A disintegrin and metalloproteinase domain-containing protein 10 (ADAM10). To identify the molecular mechanisms through which ADAM10 is associated with synaptic dysfunction in HD, we performed an immunoaffinity purification-mass spectrometry (IP-MS) study of endogenous ADAM10 in the brains of wild-type and HD mice. We found that proteins implicated in synapse organization, synaptic plasticity, and vesicle and organelles trafficking interact with ADAM10, suggesting that it may act as hub protein at the excitatory synapse. Importantly, the ADAM10 interactome is enriched in presynaptic proteins and ADAM10 co-immunoprecipitates with piccolo (PCLO), a key player in the recycling and maintenance of synaptic vesicles. In contrast, reduced ADAM10/PCLO immunoprecipitation occurs in the HD brain, with decreased density of synaptic vesicles in the reserve and docked pools at the HD presynaptic terminal. Conditional heterozygous deletion of ADAM10 in the forebrain of HD mice reduces active ADAM10 to wild-type level and normalizes ADAM10/PCLO complex formation and synaptic vesicle density and distribution. The results indicate that presynaptic ADAM10 and PCLO are a relevant component of HD pathogenesis.
Assuntos
Proteína ADAM10/metabolismo , Proteínas do Citoesqueleto/metabolismo , Doença de Huntington/metabolismo , Neuropeptídeos/metabolismo , Vesículas Sinápticas/metabolismo , Proteína ADAM10/genética , Animais , Western Blotting , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/ultraestrutura , Humanos , Doença de Huntington/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Terminações Pré-Sinápticas/metabolismo , Ligação Proteica , Mapas de Interação de Proteínas/genética , Proteômica/métodos , Vesículas Sinápticas/ultraestrutura , Sinaptossomos/metabolismo , Espectrometria de Massas em Tandem/métodosRESUMO
Acute erythroid leukemia (AEL) is characterized by a distinct morphology, mutational spectrum, lack of preclinical models, and poor prognosis. Here, using multiplexed genome editing of mouse hematopoietic stem and progenitor cells and transplant assays, we developed preclinical models of AEL and non-erythroid acute leukemia and describe the central role of mutational cooperativity in determining leukemia lineage. Different combination of mutations in Trp53, Bcor, Dnmt3a, Rb1, and Nfix resulted in the development of leukemia with an erythroid phenotype, accompanied by the acquisition of alterations in signaling and transcription factor genes that recapitulate human AEL by cross-species genomic analysis. Clonal expansion during tumor evolution was driven by mutational cooccurrence, with clones harboring a higher number of founder and secondary lesions (eg, mutations in signaling genes) showing greater evolutionary fitness. Mouse and human AEL exhibited deregulation of genes regulating erythroid development, notably Gata1, Klf1, and Nfe2, driven by the interaction of mutations of the epigenetic modifiers Dnmt3a and Tet2 that perturbed methylation and thus expression of lineage-specific transcription factors. The established mouse leukemias were used as a platform for drug screening. Drug sensitivity was associated with the leukemia genotype, with the poly (ADP-ribose) polymerase inhibitor talazoparib and the demethylating agent decitabine efficacious in Trp53/Bcor-mutant AEL, CDK7/9 inhibitors in Trp53/Bcor/Dnmt3a-mutant AEL, and gemcitabine and bromodomain inhibitors in NUP98-KDM5A leukemia. In conclusion, combinatorial genome editing has shown the interplay of founding and secondary genetic alterations in phenotype and clonal evolution, epigenetic regulation of lineage-specific transcription factors, and therapeutic tractability in erythroid leukemogenesis.
Assuntos
Edição de Genes , Leucemia Eritroblástica Aguda/genética , Animais , Sistemas CRISPR-Cas , Evolução Clonal , Epigênese Genética , Hematopoese , Humanos , Camundongos , Mutação , TranscriptomaRESUMO
Enzyme replacement therapy is the only therapeutic option for Fabry patients with completely absent AGAL activity. However, the treatment has side effects, is costly, and requires conspicuous amounts of recombinant human protein (rh-AGAL). Thus, its optimization would benefit patients and welfare/health services (i.e., society at large). In this brief report, we describe preliminary results paving the way for two possible approaches: i. the combination of enzyme replacement therapy with pharmacological chaperones; and ii. the identification of AGAL interactors as possible therapeutic targets on which to act. We first showed that galactose, a low-affinity pharmacological chaperone, can prolong AGAL half-life in patient-derived cells treated with rh-AGAL. Then, we analyzed the interactomes of intracellular AGAL on patient-derived AGAL-defective fibroblasts treated with the two rh-AGALs approved for therapeutic purposes and compared the obtained interactomes to the one associated with endogenously produced AGAL (data available as PXD039168 on ProteomeXchange). Common interactors were aggregated and screened for sensitivity to known drugs. Such an interactor-drug list represents a starting point to deeply screen approved drugs and identify those that can affect (positively or negatively) enzyme replacement therapy.
Assuntos
Doença de Fabry , Humanos , Doença de Fabry/metabolismo , alfa-Galactosidase/metabolismo , Terapia de Reposição de Enzimas/métodos , Isoenzimas/uso terapêutico , Proteínas Recombinantes/uso terapêuticoRESUMO
Acute erythroleukemia (AEL or acute myeloid leukemia [AML]-M6) is a rare but aggressive hematologic malignancy. Previous studies showed that AEL leukemic cells often carry complex karyotypes and mutations in known AML-associated oncogenes. To better define the underlying molecular mechanisms driving the erythroid phenotype, we studied a series of 33 AEL samples representing 3 genetic AEL subgroups including TP53-mutated, epigenetic regulator-mutated (eg, DNMT3A, TET2, or IDH2), and undefined cases with low mutational burden. We established an erythroid vs myeloid transcriptome-based space in which, independently of the molecular subgroup, the majority of the AEL samples exhibited a unique mapping different from both non-M6 AML and myelodysplastic syndrome samples. Notably, >25% of AEL patients, including in the genetically undefined subgroup, showed aberrant expression of key transcriptional regulators, including SKI, ERG, and ETO2. Ectopic expression of these factors in murine erythroid progenitors blocked in vitro erythroid differentiation and led to immortalization associated with decreased chromatin accessibility at GATA1-binding sites and functional interference with GATA1 activity. In vivo models showed development of lethal erythroid, mixed erythroid/myeloid, or other malignancies depending on the cell population in which AEL-associated alterations were expressed. Collectively, our data indicate that AEL is a molecularly heterogeneous disease with an erythroid identity that results in part from the aberrant activity of key erythroid transcription factors in hematopoietic stem or progenitor cells.
Assuntos
Leucemia Eritroblástica Aguda/genética , Proteínas de Neoplasias/fisiologia , Fatores de Transcrição/fisiologia , Transcriptoma , Adulto , Animais , Transformação Celular Neoplásica/genética , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Dioxigenases , Eritroblastos/metabolismo , Eritropoese/genética , Feminino , Fator de Transcrição GATA1/deficiência , Fator de Transcrição GATA1/genética , Técnicas de Introdução de Genes , Heterogeneidade Genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Pessoa de Meia-Idade , Mutação , Proteínas de Neoplasias/genética , Células-Tronco Neoplásicas/metabolismo , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/fisiologia , RNA-Seq , Quimera por Radiação , Proteínas Repressoras/genética , Proteínas Repressoras/fisiologia , Fatores de Transcrição/genética , Regulador Transcricional ERG/genética , Regulador Transcricional ERG/fisiologia , Sequenciamento do Exoma , Adulto JovemRESUMO
Neurodegenerative diseases are often caused by uncontrolled amyloid aggregation. Hence, many drug discovery processes are oriented to evaluate new compounds that are able to modulate self-recognition mechanisms. Herein, two related glycoconjugate pentacoordinate Pt(II) complexes were analyzed in their capacity to affect the self-aggregation processes of two amyloidogenic fragments, Aß21-40 and Aß25-35, of the C-terminal region of the ß-amyloid (Aß) peptide, the major component of Alzheimer's disease (AD) neuronal plaques. The most water-soluble complex, 1Ptdep, is able to bind both fragments and to deeply influence the morphology of peptide aggregates. Thioflavin T (ThT) binding assays, electrospray ionization mass spectrometry (ESI-MS), and ultraviolet-visible (UV-vis) absorption spectroscopy indicated that 1Ptdep shows different kinetics and mechanisms of inhibition toward the two sequences and demonstrated that the peptide aggregation inhibition is associated with a direct coordinative bond of the compound metal center to the peptides. These data support the in vitro ability of pentacoordinate Pt(II) complexes to inhibit the formation of amyloid aggregates and pave the way for the application of this class of compounds as potential neurotherapeutics.
Assuntos
Peptídeos beta-AmiloidesRESUMO
PURPOSE OF REVIEW: In the past decade, numerous studies analysing the genome and transcriptome of large cohorts of acute myeloid leukaemia (AML) and myelodysplastic syndrome (MDS) patients have substantially improved our knowledge of the genetic landscape of these diseases with the identification of heterogeneous constellations of germline and somatic mutations with prognostic and therapeutic relevance. However, inclusion of integrated genetic data into classification schema is still far from a reality. The purpose of this review is to summarize recent insights into the prevalence, pathogenic role, clonal architecture, prognostic impact and therapeutic management of genetic alterations across the spectrum of myeloid malignancies. RECENT FINDINGS: Recent multiomic-studies, including analysis of genetic alterations at the single-cell resolution, have revealed a high heterogeneity of lesions in over 200 recurrently mutated genes affecting disease initiation, clonal evolution and clinical outcome. Artificial intelligence and specifically machine learning approaches have been applied to large cohorts of AML and MDS patients to define in an unbiased manner clinically meaningful disease patterns including, disease classification, prognostication and therapeutic vulnerability, paving the way for future use in clinical practice. SUMMARY: Integration of genomic, transcriptomic, epigenomic and clinical data coupled to conventional and machine learning approaches will allow refined leukaemia classification and risk prognostication and will identify novel therapeutic targets for these still high-risk leukaemia subtypes.
Assuntos
Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidade , Mutação , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/mortalidade , Tomada de Decisão Clínica , Evolução Clonal , Gerenciamento Clínico , Epigenômica/métodos , Estudos de Associação Genética , Predisposição Genética para Doença , Genômica/métodos , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/terapia , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/terapia , Prognóstico , Análise de Célula Única/métodos , Resultado do TratamentoRESUMO
The fields of application of functional proteomics are not limited to the study of protein-protein interactions; they also extend to those involving protein complexes that bind DNA or RNA. These interactions affect fundamental processes such as replication, transcription, and repair in the case of DNA, as well as transport, translation, splicing, and silencing in the case of RNA. Analytical or preparative experimental approaches, both in vivo and in vitro, have been developed to isolate and identify DNA/RNA binding proteins by exploiting the advantage of the affinity shown by these proteins toward a specific oligonucleotide sequence. The present review proposes an overview of the approaches most commonly employed in proteomics applications for the identification of nucleic acid-binding proteins, such as affinity purification (AP) protocols, EMSA, chromatin purification methods, and CRISPR-based chromatin affinity purification, which are generally associated with mass spectrometry methodologies for the unbiased protein identification.