Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nutr Neurosci ; 23(4): 251-280, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29985117

RESUMO

Background: The clinical and preclinical exploration of the therapeutic properties of vitamin D have significantly increased in the past decade, owing to the growing associative evidence suggesting vitamin D is neuroprotective. However, whether depletion of vitamin D contributes to the onset of neurological disorders or is a symptom of neurological disease has yet to be defined. Much remains unclear about the causal role of vitamin D and the method of use and forms of vitamin D.Objectives: We sought to quantitatively assess if neuroprotective benefits from vitamin D in neurodegenerative diseases are dependent on route of administration: comparing the effect of endogenously sourced vitamin D from UV exposure to exogenously derived vitamin D through synthetic supplementation.Design: We systematically searched PubMed, Embase and PsycInfo databases which included both pre-clinical and clinical studies investigating vitamin D in neurodegenerative diseases. Articles were subject to strict inclusion criteria and objectively assessed for quality. Additionally, Medline data was analysed to identify trends in topic publications and linguistic characteristics of papers.Results: From a total of 231 screened articles, we identified 73 appropriate for review based on inclusion criteria: original studies that investigated vitamin D levels or levels of vitamin D supplementation in neurodegenerative diseases or investigated past/present sun exposure in disease cohorts. Results indicate there is insufficient evidence to comprehensively reflect on a potential neuroprotective role for vitamin D and if this was dependent on route of administration. The majority of current data supporting neuroprotective benefits from vitamin D are based on pre-clinical and observational studies. Solid evidence is lacking to support the current hypothesis that the beneficial effect of UV exposure results from the synthesis of vitamin D. Sun exposure, independent of vitamin D production, may be protective against multiple Sclerosis, Parkinson's disease and Alzheimer's disease. Yet, further research is required to elucidate the beneficial mechanism of actions of UV exposure. The literature of vitamin D and amyotrophic lateral sclerosis was limited, and no conclusions were drawn. Therefore, in cases where UV-derived vitamin D was hypothesized to be the beneficial mediator in the neuroprotective effects of sun exposure, we propose results are based only on associative evidence.Conclusion: On the basis of this systematic review, strong recommendations regarding therapeutic benefits of vitamin D in neurodegenerative disease cannot be made. It is unclear if vitamin D mediates a protective benefit in neurodegenerative disease or whether it is an associative marker of UV exposure, which may contribute to as of yet unidentified neuroprotective factors.


Assuntos
Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/prevenção & controle , Fármacos Neuroprotetores/administração & dosagem , Vitamina D/administração & dosagem , Animais , Suplementos Nutricionais , Humanos , Luz Solar , Resultado do Tratamento
2.
Brain Behav Immun ; 73: 125-132, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30009997

RESUMO

High ultraviolet (UV) light exposure on the skin acts as a reinforcing stimulus, increasing sun-seeking behavior and even addiction-like sun seeking behavior. However, the physiological mechanisms that underlie this process remain to be defined. Here, we propose a novel hypothesis that neuroimmune signaling, arising from inflammatory responses in UV-damaged skin cells, causes potentiated signaling within the cortico-mesolimbic pathway, leading to increased sun-seeking behaviors. This hypothesized UV-induced, skin-to-brain signaling depends upon cell stress signals, termed alarmins, reaching the circulation, thereby triggering the activation of innate immune receptors, such as toll-like receptors (TLRs). This innate immune response is hypothesized to occur both peripherally and centrally, with the downstream signaling from TLR activation affecting both the endogenous opioid system and the mesolimbic dopamine pathway. As both neurotransmitter systems play a key role in the development of addiction behaviors through their actions at key brain regions, such as the nucleus accumbens (NAc), we hypothesize a novel connection between UV-induced inflammation and the activation of pathways that contribute to the development of addiction. This paper is a review of the existing literature to examine the evidence which suggests that chronic sun tanning resembles a behavioral addiction and proposes a novel pathway by which persistent sun-seeking behavior could affect brain neurochemistry in a manner similar to that of repeated drug use.


Assuntos
Comportamento Aditivo/metabolismo , Neuroimunomodulação/fisiologia , Raios Ultravioleta/efeitos adversos , Alarminas/metabolismo , Alarminas/fisiologia , Encéfalo/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Humanos , Inflamação/metabolismo , Sistema Límbico/imunologia , Sistema Límbico/metabolismo , Neuroglia/fisiologia , Neuroimunomodulação/efeitos dos fármacos , Neurotransmissores/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptores Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA