Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Toxics ; 12(6)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38922085

RESUMO

The need to develop advanced wastewater treatment techniques and their use has become a priority, the main goal being the efficient removal of pollutants, especially those of organic origin. This study presents the photo-degradation of a pharmaceutical wastewater containing Kabi cytarabine, using ultraviolet (UV) radiation, and a synthesized catalyst, a composite based on bismuth and iron oxides (BFO). The size of the bandgap was determined by UV spectroscopy, having a value of 2.27 eV. The specific surface was determined using the BET method, having a value of 0.7 m2 g-1. The material studied for the photo-degradation of cytarabine presents a remarkable photo-degradation efficiency of 97.9% for an initial concentration 0f 10 mg/L cytarabine Kabi when 0.15 g of material was used, during 120 min of interaction with UV radiation at 3 cm from the irradiation source. The material withstands five photo-degradation cycles with good results. At the same time, through this study, it was possible to establish that pyrimidine derivatives could be able to combat infections caused by Escherichia coli and Candida parapsilosis.

2.
Gels ; 9(6)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37367167

RESUMO

In recent years, during industrial development, the expanding discharge of harmful metallic ions from different industrial wastes (such as arsenic, barium, cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, or zinc) into different water bodies has caused serious concern, with one of the problematic elements being represented by selenium (Se) ions. Selenium represents an essential microelement for human life and plays a vital role in human metabolism. In the human body, this element acts as a powerful antioxidant, being able to reduce the risk of the development of some cancers. Selenium is distributed in the environment in the form of selenate (SeO42-) and selenite (SeO32-), which are the result of natural/anthropogenic activities. Experimental data proved that both forms present some toxicity. In this context, in the last decade, only several studies regarding selenium's removal from aqueous solutions have been conducted. Therefore, in the present study, we aim to use the sol-gel synthesis method to prepare a nanocomposite adsorbent material starting from sodium fluoride, silica, and iron oxide matrices (SiO2/Fe(acac)3/NaF), and to further test it for selenite adsorption. After preparation, the adsorbent material was characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The mechanism associated with the selenium adsorption process has been established based on kinetic, thermodynamic, and equilibrium studies. Pseudo second order is the kinetic model that best describes the obtained experimental data. Also, from the intraparticle diffusion study, it was observed that with increasing temperature the value of the diffusion constant, Kdiff, also increases. Sips isotherm was found to best describe the experimental data obtained, the maximum adsorption capacity being ~6.00 mg Se(IV) per g of adsorbent material. From a thermodynamic point of view, parameters such as ΔG0, ΔH0, and ΔS0 were evaluated, proving that the process studied is a physical one.

3.
Materials (Basel) ; 16(7)2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37049135

RESUMO

Adsorption recovery of precious metals on a variety of solid substrates has steadily gained increased attention in recent years. Special attention was paid to the studies on the characterization of the adsorptive properties of materials with a high affinity for gold depending on the nature of the pendant groups present in the structure of the material. The aim of the present work was to synthesize and characterize a new material by using the sol-gel synthesis method (designated as BCb/CB). In this case, synthesis involved the following precursors: bismuth carbonate (III), carbon black, and IGEPAL surfactant (octylphenoxypolyethoxyethanol). Immobilization of the heterojunction as bismuth oxide over a flexible support such as carbon black (CB) can prevent their elution in solution and make it versatile for its use in a system. In this work, a new adsorbent material based on bismuth carbonate supported over carbon black (BCb/CB) was developed and used further for gold recovery from aqueous solutions. The required material was characterized physically/chemically by scanning electron microscopy (SEM); energy dispersive X-ray spectrometry (EDX); X-ray diffraction (XRD); thermal analysis (DTG/DTA); atomic force microscopy (AFM). The Brunauer-Emmett-Teller (BET) method was used to determine the specific surface area indicating a value of approximately 40 m2/g, higher than the surface of CB precursor (36 m2/g). The adsorptive properties and the adsorption mechanism of the materials were highlighted in order to recover Au(III). For this, static adsorption studies were carried out. The parameters that influence the adsorption process were studied, namely: the pH, the contact time, the temperature, and the initial concentration of the gold ions in the used solution. In order to establish the mechanism of the adsorption process, kinetic, thermodynamic, and equilibrium studies were carried out. Experimental data proved that the gold recovery can be conducted with maximum performance at pH 3, at room temperature. Thermodynamic studies proved that the gold adsorption on BCb/CB material is a spontaneous and endothermal process. The results indicate a total adsorption capacity of 13.1 mg Au(III)/g material. By using this material in real solutions, a recovery efficiency of 90.5% was obtained, concomitant with a higher selectivity (around 95%).

4.
Materials (Basel) ; 15(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36556774

RESUMO

Vanadium is considered a strategic metal with wide applications in various industries due to its unique chemical and physical properties. On the basis of these considerations, the recovery of vanadium (V) is mandatory because of the lack of raw materials. Various methods are used to recover vanadium (V) from used aqueous solutions. This study develops a clean and effective process for the recovery of vanadium (V) by using the adsorption method. At the same time, this study synthesizes a material starting from silica matrices and iron oxides, which is used as an adsorbent material. To show the phase composition, the obtained material is characterized by X-ray diffraction showing that the material is present in the amorphous phase, with a crystal size of 20 nm. However, the morphological texture of the material is determined by the N2 adsorption-desorption method, proving that the adsorbent material has a high surface area of 305 m2/g with a total pore volume of 1.55 cm3/g. To determine the efficiency of the SiO2FexOy material for the recovery of vanadium through the adsorption process, the role of specific parameters, such as the L-to-V ratio, pH, contact time, temperature, and initial vanadium concentration, must be evaluated. The adsorption process mechanism was established through kinetic, thermodynamic, and equilibrium studies. In our case, the process is physical, endothermic, spontaneous, and takes place at the interface of SiO2FexOy with V2O5. Following equilibrium studies, the maximum adsorption capacity of the SiO2FexOy material was 58.8 mg (V)/g of material.

5.
Materials (Basel) ; 15(15)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35955299

RESUMO

This study aims to remove arsenic from an aqueous medium by adsorption on a nanocomposite material obtained by the sol-gel method starting from matrices of silica, iron oxide and NaF (SiO2/Fe(acac)3/NaF). Initially, the study focused on the synthesis and characterization of the material by physico-chemical methods such as: X-ray diffraction, FT-IR spectroscopy, Raman spectroscopy, atomic force microscopy, and magnetization. Textural properties were obtained using nitrogen adsorption/desorption measurements. The zero load point, pHpZc, was also determined by the method of bringing the studied system into equilibrium. In addition, this study also provides a comprehensive discussion of the mechanism of arsenic adsorption by conducting kinetic, thermodynamic and equilibrium studies. Studies have been performed to determine the effects of adsorbent dose, pH and initial concentration of arsenic solution, material/arsenic contact time and temperature on adsorption capacity and material efficiency. Three theoretical adsorption isotherms were used, namely Langmuir, Freundlich and Sips, to describe the experimental results. The Sips isotherm was found to best describe the experimental data obtained, the maximum adsorption capacity being ~575 µg As(III)/g. The adsorption process was best described by pseudo-second order kinetics. Studies have been performed at different pH values to establish not only the optimal pH at which the adsorption capacity is maximum, but also which is the predominantly adsorbed species. The effect of pH and desorption studies have shown that ion exchange and the physiosorption mechanism are implicated in the adsorption process. From a thermodynamic point of view, parameters such as ΔG°, ΔH° and ΔS° were evaluated to establish the mechanism of the adsorption process. Desorption studies have been performed to determine the efficiency of the material and it has been shown that the material can be used successfully to treat a real-world example of deep water with a high arsenic content.

6.
Polymers (Basel) ; 14(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35160478

RESUMO

The aim of this paper was to formulate microspheres based on biodegradable polymers (chitosan and sodium alginate), using the complex coacervation technique. Subsequently, the prepared microspheres were loaded with quercetin (QUE), a pharmacological active ingredient insoluble in water and unstable to light, temperature and air. After preparation, the loaded microspheres underwent several studies for physical chemical characterization (performed by scanning electron microscopy-SEM, laser 3D scanning, and thermal analysis-TA). Furthermore, they were analyzed in order to obtain information regarding swelling index, drug entrapment, and in vitro release capacity. The obtained experimental data demonstrated 86.07% entrapment of QUE into the microspheres, in the case of the one with the highest Ch concentration. Additionally, it was proved that such systems allow the controlled release of the active drug over 24 h at the intestinal level. SEM micrographs proved that the prepared microspheres have a wrinkled surface, with compact structures and a large number of folds. On the basis of the TA analysis, it was concluded that the obtained microspheres were thermally stable, facilitating their usage at normal physiological temperatures as drug delivery systems.

7.
Pharmaceutics ; 14(10)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36297497

RESUMO

The antibacterial activity of zinc oxide particles has received significant interest worldwide, especially through the implementation of technology to synthesize particles in the nanometer range. This study aimed to determine the antimicrobial efficacy of silica-based iron oxide matrix (SiO2FexOy) synthesized with various amounts of ZnO (SiO2FexOyZnO) against various pathogens. It is observed that, with the addition of ZnO to the system, the average size of the porosity of the material increases, showing increasingly effective antibacterial properties. Zinc-iron-silica oxide matrix composites were synthesized using the sol-gel method. The synthesized materials were investigated physicochemically to highlight their structural properties, through scanning electron microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), and Fourier-transform infrared spectroscopy (FT-IR). At the same time, surface area, pore size and total pore volume were determined for materials synthesized using the Brunauer-Emmett-Teller (BET) method. Although the material with 0.0001 g ZnO (600 m2/g) has the highest specific surface area, the best antimicrobial activity was obtained for the material with 1.0 g ZnO, when the average pore volume is the largest (~8 nm) for a specific surface of 306 m2/g. This indicates that the main role in the antibacterial effect has reactive oxygen species (ROS) generated by the ZnO that are located in the pores of the composite materials. The point of zero charge (pHpZc) is a very important parameter for the characterization of materials that indicate the acid-base behaviour. The pHpZc value varies between 4.9 and 6.3 and is influenced by the amount of ZnO with which the iron-silica oxide matrix is doped. From the antimicrobial studies carried out, it was found that for S. aureus the total antibacterial effect was obtained at the amount of 1.0 g ZnO. For Gram-negative bacteria, a total antibacterial effect was observed in S. flexneri (for the material with 0.1 g ZnO), followed by E. coli (for 1.0 g ZnO). For P. aeruginosa, the maximum inhibition rate obtained for the material with 1.0 g ZnO was approximately 49%.

8.
Materials (Basel) ; 15(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36295119

RESUMO

Indium and its compounds have many industrial applications and are widely used in the manufacture of liquid crystal displays, semiconductors, low temperature soldering, and infrared photodetectors. Indium does not have its own minerals in the Earth's crust, and most commonly, indium is associated with the ores of zinc, lead, copper and tin. Therefore, it must be recovered as a by-product from other metallurgical processes or from secondary raw materials. The aim of this study is to investigate the adsorption properties for recovering indium from aqueous solutions using iron-magnesium composite (MgFe2O4). In addition, the results show that the material offers very efficient desorption in 15% HCl solution, being used for 10 adsorption-desorption cycle test. These results provide a simple and effective process for recovering indium. Present study was focuses on the synthesis and characterization of the material by physico-chemical methods such as: X-ray diffraction, FT-IR spectroscopy, followed by the adsorption tests. The XRD indicates that the MgFe2O4 phase was obtained, and the crystallite size was about 8 nm. New prepared adsorbent materials have a point of zero charge of 9.2. Studies have been performed to determine the influence of pH, initial indium solution concentration, material/solution contact time and temperature on the adsorption capacity of the material. Adsorption mechanism was established by kinetic, thermodynamic and equilibrium studies. At equilibrium a maximum adsorption capacity of 46.4 mg/g has been obtained. From kinetic and thermodynamic studies was proved that the studied adsorption process is homogeneous, spontaneous, endothermic and temperature dependent. Based on Weber and Morris model, we can conclude that the In (III) ions takes place at the MgFe2O4/In (III) solution-material interface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA