Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ophthalmol Sci ; 4(6): 100465, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39149712

RESUMO

Purpose: To reveal the causality between retinal vascular density (VD), fractal dimension (FD), and brain cortex structure using Mendelian randomization (MR). Design: Cross-sectional study. Participants: Genome-wide association studies of VD and FD involving 54 813 participants from the United Kingdom Biobank were used. The brain cortical features, including the cortical thickness (TH) and surface area (SA), were extracted from 51 665 patients across 60 cohorts. Surface area and TH were measured globally and in 34 functional regions using magnetic resonance imaging. Methods: Bidirectional univariable MR (UVMR) was used to detect the causality between FD, VD, and brain cortex structure. Multivariable MR (MVMR) was used to adjust for confounding factors, including body mass index and blood pressure. Main Outcome Measures: The global and regional measurements of brain cortical SA and TH. Results: At the global level, higher VD is related to decreased TH (ß = -0.0140 mm, 95% confidence interval: -0.0269 mm to -0.0011 mm, P = 0.0339). At the functional level, retinal FD is related to the TH of banks of the superior temporal sulcus and transverse temporal region without global weighted, as well as the SA of the posterior cingulate after adjustment. Vascular density is correlated with the SA of subregions of the frontal lobe and temporal lobe, in addition to the TH of the inferior temporal, entorhinal, and pars opercularis regions in both UVMR and MVMR. Bidirectional MR studies showed a causation between the SA of the parahippocampal and cauda middle frontal gyrus and retinal VD. No pleiotropy was detected. Conclusions: Fractal dimension and VD causally influence the cortical structure and vice versa, indicating that the retinal microvasculature may serve as a biomarker for cortex structural changes. Our study provides insights into utilizing noninvasive fundus images to predict cortical structural deteriorations and neuropsychiatric disorders. Financial Disclosures: The author(s) have no proprietary or commercial interest in any materials discussed in this article.

2.
Diagnostics (Basel) ; 13(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36900043

RESUMO

Deep learning (DL) is the new high-profile technology in medical artificial intelligence (AI) for building screening and diagnosing algorithms for various diseases. The eye provides a window for observing neurovascular pathophysiological changes. Previous studies have proposed that ocular manifestations indicate systemic conditions, revealing a new route in disease screening and management. There have been multiple DL models developed for identifying systemic diseases based on ocular data. However, the methods and results varied immensely across studies. This systematic review aims to summarize the existing studies and provide an overview of the present and future aspects of DL-based algorithms for screening systemic diseases based on ophthalmic examinations. We performed a thorough search in PubMed®, Embase, and Web of Science for English-language articles published until August 2022. Among the 2873 articles collected, 62 were included for analysis and quality assessment. The selected studies mainly utilized eye appearance, retinal data, and eye movements as model input and covered a wide range of systemic diseases such as cardiovascular diseases, neurodegenerative diseases, and systemic health features. Despite the decent performance reported, most models lack disease specificity and public generalizability for real-world application. This review concludes the pros and cons and discusses the prospect of implementing AI based on ocular data in real-world clinical scenarios.

3.
NPJ Digit Med ; 6(1): 192, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845275

RESUMO

Image quality variation is a prominent cause of performance degradation for intelligent disease diagnostic models in clinical applications. Image quality issues are particularly prominent in infantile fundus photography due to poor patient cooperation, which poses a high risk of misdiagnosis. Here, we developed a deep learning-based image quality assessment and enhancement system (DeepQuality) for infantile fundus images to improve infant retinopathy screening. DeepQuality can accurately detect various quality defects concerning integrity, illumination, and clarity with area under the curve (AUC) values ranging from 0.933 to 0.995. It can also comprehensively score the overall quality of each fundus photograph. By analyzing 2,015,758 infantile fundus photographs from real-world settings using DeepQuality, we found that 58.3% of them had varying degrees of quality defects, and large variations were observed among different regions and categories of hospitals. Additionally, DeepQuality provides quality enhancement based on the results of quality assessment. After quality enhancement, the performance of retinopathy of prematurity (ROP) diagnosis of clinicians was significantly improved. Moreover, the integration of DeepQuality and AI diagnostic models can effectively improve the model performance for detecting ROP. This study may be an important reference for the future development of other image-based intelligent disease screening systems.

4.
Br J Ophthalmol ; 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36428006

RESUMO

AIMS: To characterise retinal microvascular alterations in the eyes of pregnant patients with anaemia (PA) and to compare the alterations with those in healthy controls (HC) using optical coherence tomography angiography (OCTA). METHODS: This nested case‒control study included singleton PA and HC from the Eye Health in Pregnancy Study. Fovea avascular zone (FAZ) metrics, perfusion density (PD) in the superficial capillary plexus, deep capillary plexus and flow deficit (FD) density in the choriocapillaris (CC) were quantified using FIJI software. Linear regressions were conducted to evaluate the differences in OCTA metrics between PA and HC. Subgroup analyses were performed based on comparisons between PA diagnosed in the early or late trimester and HC. RESULTS: In total, 99 eyes of 99 PA and 184 eyes of 184 HC were analysed. PA had a significantly reduced FAZ perimeter (ß coefficient=-0.310, p<0.001), area (ß coefficient=-0.121, p=0.001) and increased circularity (ß coefficient=0.037, p<0.001) compared with HC. Furthermore, higher PD in the central (ß coefficient=0.327, p=0.001) and outer (ß coefficient=0.349, p=0.007) regions were observed in PA. PA diagnosed in the first trimester had more extensive central FD (ß coefficient=4.199, p=0.003) in the CC, indicating impaired perfusion in the CC. CONCLUSION: It was found that anaemia during pregnancy was associated with macular microvascular abnormalities, which differed in PA as pregnancy progressed. The results suggest that quantitative OCTA metrics may be useful for risk evaluation before clinical diagnosis. TRIAL REGISTRATION NUMBERS: 2021KYPJ098 and ChiCTR2100049850.

5.
Nat Med ; 28(9): 1883-1892, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36109638

RESUMO

The storage of facial images in medical records poses privacy risks due to the sensitive nature of the personal biometric information that can be extracted from such images. To minimize these risks, we developed a new technology, called the digital mask (DM), which is based on three-dimensional reconstruction and deep-learning algorithms to irreversibly erase identifiable features, while retaining disease-relevant features needed for diagnosis. In a prospective clinical study to evaluate the technology for diagnosis of ocular conditions, we found very high diagnostic consistency between the use of original and reconstructed facial videos (κ ≥ 0.845 for strabismus, ptosis and nystagmus, and κ = 0.801 for thyroid-associated orbitopathy) and comparable diagnostic accuracy (P ≥ 0.131 for all ocular conditions tested) was observed. Identity removal validation using multiple-choice questions showed that compared to image cropping, the DM could much more effectively remove identity attributes from facial images. We further confirmed the ability of the DM to evade recognition systems using artificial intelligence-powered re-identification algorithms. Moreover, use of the DM increased the willingness of patients with ocular conditions to provide their facial images as health information during medical treatment. These results indicate the potential of the DM algorithm to protect the privacy of patients' facial images in an era of rapid adoption of digital health technologies.


Assuntos
Inteligência Artificial , Privacidade , Algoritmos , Confidencialidade , Face , Humanos , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA